

EMC TEST REPORT

Applicant Address	 MUST ENERGY (GUANGDONG) TECHN 1-5F, 7F, 9F, 10Fof No.8 building, No.115 district, Foshan city, Guangdong Province, 	,Zhangcha Road 1, Chancheng
Manufacturer Address	 MUST ENERGY (GUANGDONG) TECHN 1-5F, 7F, 9F, 10Fof No.8 building, No.115 district, Foshan city, Guangdong Province, 	,Zhangcha Road 1, Chancheng
Factory Address	 MUST ENERGY (GUANGDONG) TECHN 1-5F, 7F, 9F, 10Fof No.8 building, No.115 district,Foshan city, Guangdong Province, 	,Zhangcha Road 1, Chancheng
E.U.T.	: SOLAR POWER SYSTEM	
Brand Name	: MUST	
Model No.	: HBP18-3024, HBP18-2024, HBP18-1012	
Standard	: EN IEC 61000-6-1: 2019 EN IEC 61000-6-3: 2021 EN 61000-3-12: 2011 EN IEC 61000-3-11: 2019	
Date of Receiving Samples	: October 24, 2022	
Date of Test	: October 25, 2022 to November 04, 2022	
Date of Report	: February 28, 2023	
2	ssued Under the Authority of : Appred by Appre	oved & Authorized Signer
Jonr	ry Cue	Consistent NTC Consistent TC
Jonny (Guo / Engineer Evan	Yang / Authorized Signatory

This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior written approval of Shenzhen Nore Testing Center Co., Ltd, this report shall not be reproduced except in full.

TEL: +86-755-33525266 Web: www.ntc-c.com Address: South, No. 1, Building 10, Maqueling Industrial Zone, Nanshan Shenzhen, Guangdong, 518057, China

TABLE OF CONTENTS

1. SUMMARY OF TEST RESULTS	5
2. TEST UNCERTAINTY	
3. GENERAL INFORMATION	7
3.1. Product Information	
3.2. Block Diagram of Test Setup	
3.3. Test Mode	
3.4. Test Conditions	
3.5. Sample Calculations	
3.7. Abnormalities from Standard Conditions	13
4. MEASURING DEVICES AND TEST EQUIPMENT	
4.1. For Conducted Emission Measurement	14
4.2. For Radiated Emission Measurement	
4.3. For Harmonic Current/ Flicker Measurement	
4.4. For Electrostatic Discharge Test	
4.5. For Voltage Dips and Interruption	
4.6. For Radio-Frequency Electromagnetic Field Test 4.7. For Fast transients test	
4.8. For Surge Test	
4.9. For Conducted Radio-Frequency Common Mode Test	
5. CONDUCTED EMISSION MEASUREMENT	
5.1. Block Diagram of Test Setup	
5.2. Limit of Conducted Emission Measurement	16
5.3. Test Procedure	16
5.4. Test Results	17
6. RADIATED EMISSION MEASUREMENT	
6.1. Block Diagram of Test Setup	24
6.1. Block Diagram of Test Setup 6.2. Limit of Radiated Emission Measurement	24 24
6.1. Block Diagram of Test Setup 6.2. Limit of Radiated Emission Measurement 6.3. Test Procedure	24 24 26
 6.1. Block Diagram of Test Setup 6.2. Limit of Radiated Emission Measurement 6.3. Test Procedure 6.4. Test Results 	24 24 26 26
 6.1. Block Diagram of Test Setup 6.2. Limit of Radiated Emission Measurement 6.3. Test Procedure 6.4. Test Results 7. HARMONIC CURRENT EMISSION MEASUREMENT	24 24 26 26 33
 6.1. Block Diagram of Test Setup 6.2. Limit of Radiated Emission Measurement	24 24 26 26 33 33
 6.1. Block Diagram of Test Setup 6.2. Limit of Radiated Emission Measurement 6.3. Test Procedure 6.4. Test Results 7. HARMONIC CURRENT EMISSION MEASUREMENT 7.1. Block Diagram of Test Setup 7.2. Test Limits 	24 26 26 33 33
 6.1. Block Diagram of Test Setup 6.2. Limit of Radiated Emission Measurement	24 26 26 33 33 33 34
 6.1. Block Diagram of Test Setup 6.2. Limit of Radiated Emission Measurement	24 26 26 33 33 33 34 34
 6.1. Block Diagram of Test Setup 6.2. Limit of Radiated Emission Measurement	24 26 26 33 33 33 34 34 34
 6.1. Block Diagram of Test Setup 6.2. Limit of Radiated Emission Measurement	24 26 26 33 33 33 34 34 36
 6.1. Block Diagram of Test Setup 6.2. Limit of Radiated Emission Measurement 6.3. Test Procedure 6.4. Test Results 7. HARMONIC CURRENT EMISSION MEASUREMENT 7.1. Block Diagram of Test Setup	24 26 26 33 33 33 34 34 36 36 36
 6.1. Block Diagram of Test Setup	24 26 26 33 33 33 34 34 36 36 36 36
 6.1. Block Diagram of Test Setup 6.2. Limit of Radiated Emission Measurement 6.3. Test Procedure 6.4. Test Results 7. HARMONIC CURRENT EMISSION MEASUREMENT 7.1. Block Diagram of Test Setup	24 26 26 33 33 33 34 34 36 36 36 36
 6.1. Block Diagram of Test Setup	24 26 26 33 33 33 34 36 36 36 36 36 36 38 39
 6.1. Block Diagram of Test Setup	24 26 26 33 33 33 33 34 36 36 36 36 36 36 38 39 39
 6.1. Block Diagram of Test Setup	24 26 26 33 33 33 33 33 33 34 36 36 36 36 36 36 38 39 39 39
 6.1. Block Diagram of Test Setup	24 26 26 33 33 33 34 34 36 36 36 36 36 36 36 36 38 39 39 39 39 39
 6.1. Block Diagram of Test Setup	24 26 26 33 33 33 34 36 36 36 36 36 36 36 36 36 36 39 39 39 40 41
 6.1. Block Diagram of Test Setup	24 26 26 33 33 33 34 36 36 36 36 36 36 36 36 36 38 39 39 39 40 41 43
 6.1. Block Diagram of Test Setup	24 26 26 33 33 33 34 36 36 36 36 36 36 36 36 36 38 39 39 39 40 41 43

_

11.3. Test Procedure	
11.4. Test Results	
12. FAST TRANSIENTS TEST	
12.1. Block Diagram of Test Setup	
12.2. Test Standard and Severity Levels	
12.3. Test Procedure	
12.4. Test Result	
13. SURGE TEST	49
13.1. Block Diagram of Test Setup	49
13.2. Test Standard and Severity Levels	
13.3. Test Procedure	
13.4. Test Result	
14. CONDUCTED RADIO-FREQUENCY COMMON MODE TEST	52
14.1. Block Diagram of Test Setup	52
14.2. Test Standard and Severity Levels	52
14.3. Test Procedure	
14.4. Test Result	53
15. POWER-FREQUENCY MAGNETIC FIELD TEST	55
15.1. Block Diagram of Test Setup	55
15.2. Test Standard and Severity Levels	
15.3. Test Procedure	56
15.4. Test Result	
16. VOLTAGE DIPS AND INTERRUPTIONS TEST	57
16.1. Block Diagram of Test Setup	57
16.2. Test Standard and Severity Levels	
16.3. Test Procedure	
16.4. Test Result	58
APPENDIX I (PHOTOS OF TEST SETUP)	60
APPENDIX II (PHOTOS OF E.U.T)	

Revision History of This Test Report

Report Number	Description	Issued Date
SZNTC2210052EV00	Initial Issue	2023-02-28

1.SUMMARY OF TEST RESULTS

The E.U.T. has been	n tested according	to the	following	specifications.
			10110 Willing	opcomodiono.

EMISSION						
Standard	Test Type	Verdict	Remarks			
EN IEC 61000-6-3:	Conducted Emission Measurement	PASS	Meets the requirements			
2021	Radiated Emission Measurement	PASS	Meets the requirements.			
EN 61000-3-12: 2011	Harmonic current emission Measurement	PASS	Meets the requirements.			
EN IEC 61000-3-11: 2019	Voltage Fluctuations & Flicker Measurement	PASS	Meets the requirements.			

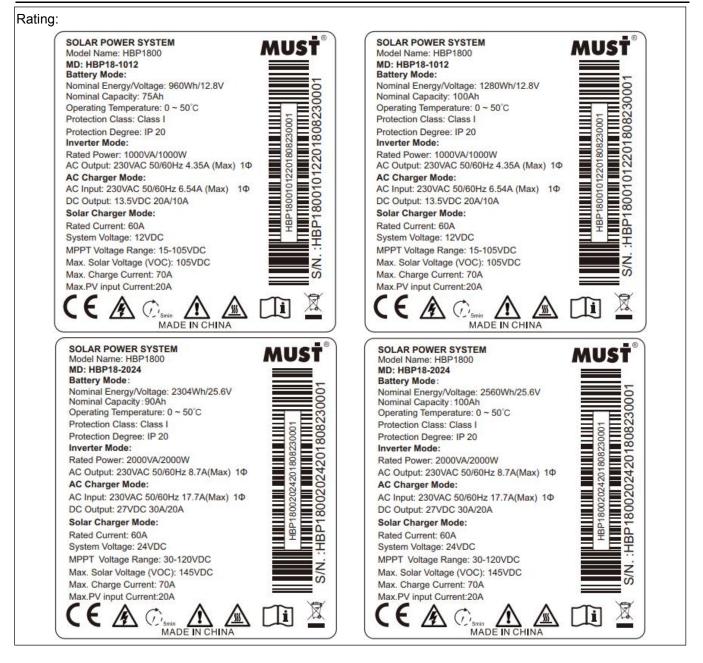
IMMUNITY(EN IEC 61000-6-1: 2019)							
Basic Standard Test Type		Verdict	Results (Performance Criterion)				
IEC 61000-4-2: 2008	Electrostatic Discharge Test	PASS	A				
IEC 61000-4-3: 2006/ A1:2007/ A2:2010	Radio-Frequency Electromagnetic Field Test	PASS	A				
IEC 61000-4-4: 2012	Fast transients test	PASS	A				
IEC 61000-4-5: 2014	Surge Test	PASS	A				
IEC 61000-4-6: 2013	Radio-Frequency Common Mode Test	PASS	A				
IEC 61000-4-8: 2009	Power-Frequency Magnetic Field Test	N/A ^{note 1}					
IEC 61000-4-34: 2005	Voltage dips and interruptions	PASS	В				

Note: 1. Applicable only to equipment containing devices susceptible to magnetic fields.

2.TEST UNCERTAINTY

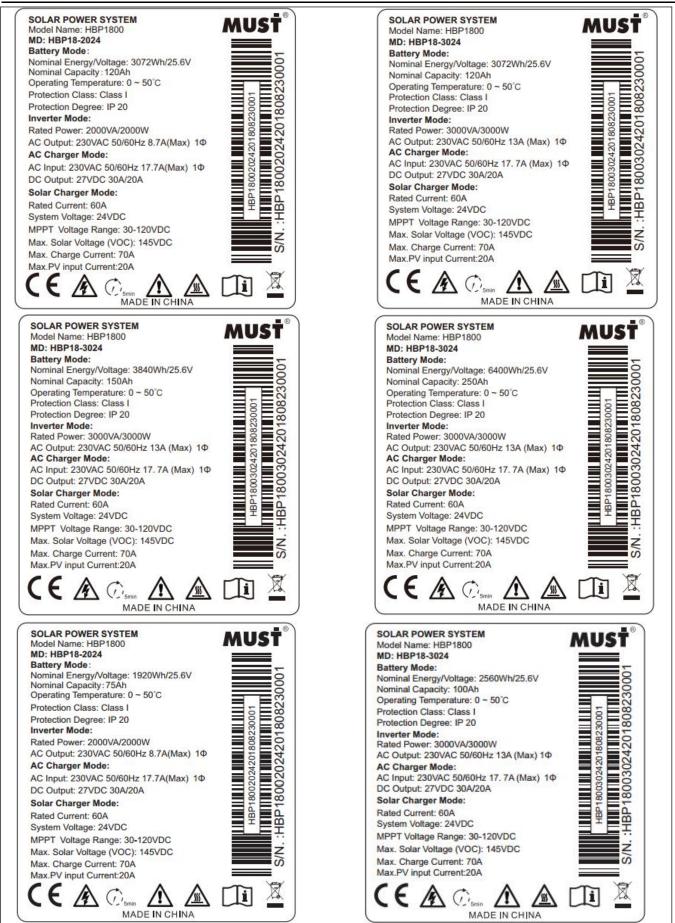
Where relevant, the following test uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Uncertainty	
Conducted Emission Measurement (0.15-30MHz)	±2.3dB	
Radiated Emission Measurement (30-1000MHz)	±3.9dB	
Remark: As U _{lab} in all applicable tests listed above are less than U _{cispr} according to CISPR 16-4-2, compliance is deemed to occur if no measured disturbance exceeds the disturbance limit; non-compliance is deemed to occur if any measured disturbance exceeds the exceeds the disturbance limit.		

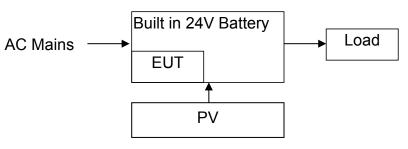


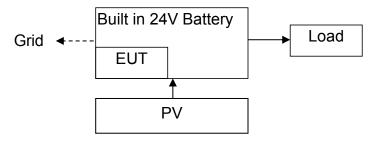
3.GENERAL INFORMATION

3.1.Product Information

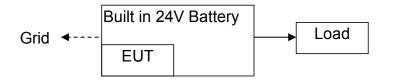

E.U.T.:	SOLAR POWER SYSTEM
Main Model Name:	HBP18-3024
Additional Model Name:	HBP18-2024, HBP18-1012
Description of model difference:	These models are identical in terms of internal structure, circuits, components, etc., but the model name and output power are different. Therefore, only HBP18-3024 is used for testing.
E.U.T Type:	Residential Environment
Typical arrangement:	floor type
Brand Name:	MUST
Highest Internal Frequency:	Below 108MHz
Rating:	See pages 8-9
Cable:	N/A
Sample No.:	SZNTC2210052EV00001
Remark:	All the information above are provided by the manufacturer. More detailed feature of the EUT please refers to the user manual.

Shenzhen Nore Testing Center Co.,Ltd. Report No.: SZNTC2210052EV00





3.2.Block Diagram of Test Setup


1. AC Input mode+ Battery + load

2. PV Input mode+ Battery + load

3. Inverter mode

3.3.Test Mode

No.	Test Mode	Remark
1.	AC Input mode+ Battery + load	With R load
2.	PV Input mode+ Battery + load	With R load
3.	Inverter mode	With R load

3.4.Test Conditions

No.	Test Item	Test Mode	Test Voltage	Tested by	Remarks
1.	Conducted Emission - AC power input port	1-3	AC 230V/50Hz PV 100V DC 24V	YXH	See note 1
2.	Conducted Emission - AC power output port				
3	Conducted Disturbances - Wired network port or signal / control port				
4.	Radiated Emission	1-3	AC 230V/50Hz PV 100V DC 24V	PH	See note 1
5.	Harmonic Current Emission	1	AC 230V/50Hz	CRB	See note 1
5.	Voltage Fluctuations & Flicker	1	AC 230V/50Hz	CRB	See note 1
6.	Electrostatic Discharges (ESD)	1	AC 230V/50Hz	CRB	See note 2&3
7.	Radio-Frequency Electromagnetic Field	1	AC 230V/50Hz	Chance	See note 1&3
8.	Fast transients test	1	AC 230V/50Hz	CRB	See note 1&3
9.	Surges	1	AC 230V/50Hz	CRB	See note 1&3
10.	Radio-Frequency Common Mode Test	1	AC 230V/50Hz	Chance	See note 1&3
11.	Power Frequency Magnetic Field				
12 Note [:]	Voltage dips and interruptions	1	AC 230V/50Hz	YXH	See note 1&3

Note:

1. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35°C, 30~70%, 86~106kPa.

2. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35°C, 30~60%, 86~106kPa.

3. Only the worst data were recorded on the report.

4. Only the most stringent limits and data were recorded on the report.

3.5.Sample Calculations

Conducted Emission							
Freq. (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	
0.2260	11.56	12.50	24.06	66.00	-41.94	AVG	
Where,							
Freq.	= Emiss	ion frequency in MH	lz				
Reading	On a strum Angler su/De seiver De seliner						
Factor							
Level	Level = Reading + Factor						
Limit	Limit = Limit stated in standard						
Margin	Margin = Measurement - Limit						
Detector	= Readi	ng for Quasi-Peak /	Average / Peak				

	Radiated Emission								
Freq. (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
75.9773	-17.06	59.36	42.30	49.00	-6.70	QP			
Where,						1			
Freq.	= Emiss	ion frequency in MH	Iz						
Reading	= Spect	rum Analyzer/Receiv	ver Reading						
Factor	= Anten	na Factor + Cable L	oss - Pre-amplifier						
Level	= Readi	ng + Factor							
Limit	= Limit s	stated in standard							
Margin	= Margir	n, which calculated I	by Level - Limit						
Detector	= Readi	ng for Quasi-Peak /	Average / Peak						

3.6.Test Facility

Test Site:	Shenzhen Nore Testing Center Co., Ltd.
Accreditations and	Listed by CNAS, May 18, 2018
Authorizations:	The certificate is valid until May 17, 2024
	The Laboratory has been assessed and proved to be in compliance with CNAS/CL01
	The Certificate Registration Number is L11038.
Test Site Location:	South, No. 1, Building 10, Maqueling Industrial Zone, Nanshan
	Shenzhen, Guangdong, 518057, China
Subcontractor 1:	Dongguan Nore Testing Center Co.,Ltd.
Test Site Location:	Building D, Gaosheng Science and Technology Park, Hongtu Road,
	Nancheng District, Dongguan City, Guangdong Province, China
Test Items:	Radio-Frequency Electromagnetic Field
	Conducted Radio-Frequency Common Mode

3.7.Abnormalities from Standard Conditions

None

4.MEASURING DEVICES AND TEST EQUIPMENT

4.1.For Conducted Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI-3	100120	Mar. 28, 2022	1 Year
2.	L.I.S.N	Rohde & Schwarz	ESH3-Z5	100157	Mar. 28, 2022	1 Year
3.	L.I.S.N	SCHWARZBECK	NNLK8129	8129-212	Mar. 28, 2022	1 Year
4.	Test Software	EZ	EZ-EMC (Ver. CT3A11)	N/A	N/A	N/A

4.2.For Radiated Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESPI-7	100006	Mar. 28, 2022	1 Year
2.	Loop Antenna	ZHINAN	ZN30900C	16036	Apr. 09, 2022	2 Year
3.	Composite logarithmic antenna	SCHAFFNER	CBL6112B	2625	Apr. 09, 2022	2 Year
4.	Horn Antenna	SCHWARZBECKI	BBHA 9120 D	01884	Apr. 09, 2022	2 Year
5.	Power Amplifier	HP	HP 8447D	2443A04646	Mar. 28, 2022	1 Year
6.	Power Amplifier	KSYET	PAM-118	443007	Mar. 28, 2022	1 Year
7.	Test Software	EZ	EZ-EMC (Ver. CT3A11)	N/A	N/A	N/A

4.3.For Harmonic Current/ Flicker Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	POWER ANALYZER	HIOKI	PW3390	N/A	Oct. 26, 2022	1 Year
2.	Current probe	HIOKI	9709-05	N/A	Oct. 26, 2022	1 Year
3.	Three-phase Flicker Impedance	YANBIXIN	YX91L1-75A-T RD2110008F	N/A	Mar. 28, 2022	1 Year

4.4.For Electrostatic Discharge Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	ESD Tester	HAEFELY	ONYX16	1811981	Apr. 09, 2022	1 Year

4.5. For Voltage Dips and Interruption

Iter	n Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Analog power supply	Ainuo	ANBGS060TL	2209GBS021	Oct. 20, 2022	1 Year

4.6.For Radio-Frequency Electromagnetic Field Test (Dongguan Nore Testing Center Co., Ltd.)

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Signal Generator	Agilent	N5181A	MY47070160	Mar. 13, 2022	1 Year
2.	RF Switch	SKET	N/A	N/A	N/A	N/A
3.	Power Amplifier	SKET	HAP801000M_25 0W	201804008	N/A	N/A
4.	Power Amplifier	SKET	HAP0103G_75W	201804009	N/A	N/A
5.	Power Amplifier	SKET	HAP0306G_50W	201804010	N/A	N/A
6.	Power Meter	Agilent	E4419B	GB40201469	Mar. 13, 2022	1 Year
7.	Power Sensor	Agilent	E9304A	MY41498919	Mar. 13, 2022	1 Year
8.	Power Sensor	Agilent	E9300A	US39211259	Mar. 13, 2022	1 Year
9.	E-Field Probe	Narda	EP-601	N/A	Mar. 23, 2022	1 Year
10.	Antenna	Schwarzbeck	STLP 9129	9129071	N/A	N/A
11.	Audio Analyzer	Rohde & Schwarz	UPV	100894	Mar. 13, 2022	1 Year
12.	Test Software	SKET	SKET_RS	N/A	N/A	N/A

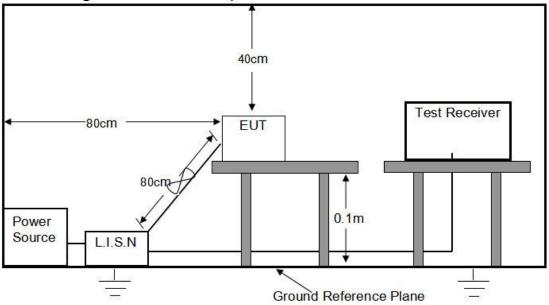
4.7.For Fast transients test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EFT Simulator	HTEC	HEFT	203601	Mar. 28, 2022	1 Year
2.	Three- phase EFT Coupling CDN	HTEC	HCOUPLER 60E	204301	Mar. 28, 2022	1 Year

4.8.For Surge Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Surge Simulator	HTEC	HCWG	205301	Mar. 28, 2022	1 Year
2.	Three- phase Surge Coupling CDN	HTEC	HCOUPLER 60S	204201	Mar. 28, 2022	1 Year

4.9. For Conducted Radio-Frequency Common Mode Test


(Dongguan Nore Testing Center Co., Ltd.)

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Signal generator	IFR	2023A	2023051280	Mar. 13, 2022	1 Year
2.	Power Amplifier	SCHAFFNER	CBA9425	1022	Mar. 13, 2022	1 Year
3.	6dB 50Watt Attenuator	SCHAFFNER	ATN6025	N/A	Mar. 13, 2022	1 Year
4.	CDN	Lioncel	CDN-M3-16	0170703	Mar. 13, 2022	1 Year
5.	CDN	Lioncel	CDN-M2-16	0170708	Mar. 13, 2022	1 Year
6.	CDN	CDSI	ADN-M5/AF5	8105001	Mar. 13, 2022	1 Year
7.	EM Clamp	CDSI	EMCL-22	8192007	Mar. 13, 2022	1 Year
8.	Directional Coupler	SCHAFFNER	255	19184	Mar. 13, 2022	1 Year
9.	Audio Analyzer	Rohde & Schwarz	UPV	100894	Mar. 13, 2022	1 Year
10.	Test Software	EZ	EZ_CS	N/A	N/A	N/A

5.CONDUCTED EMISSION MEASUREMENT

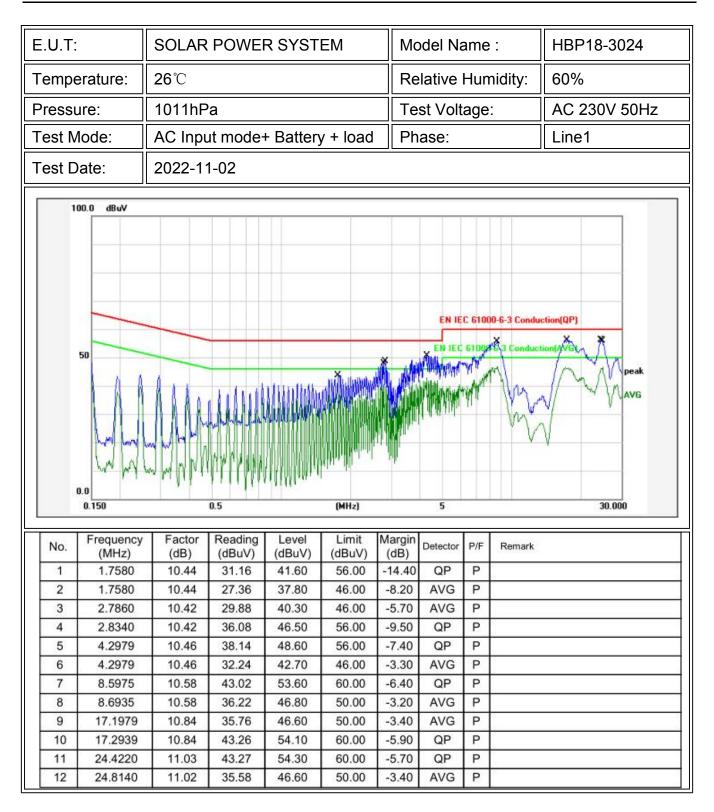
5.1.Block Diagram of Test Setup

5.2.Limit of Conducted Emission Measurement

	Limits dB (µV)							
☑ AC Mains Port			DC Power Port		Other Wire Port			
Quasi-peak	Average	Quasi-peak	Average	Quasi-peak	Average	- type /		
						bandwidt		
66 to 56ª	56 to 46ª	79	66	84 to 74ª	74 to 64ª			
56	46					9 kHz		
60	50	66	60	/4	64			
	Quasi-peak 66 to 56 ^a 56	Quasi-peak Average 66 to 56 ^a 56 to 46 ^a 56 46	Image: AC Mains Port Image: DC Port Quasi-peak Average Quasi-peak 66 to 56 ^a 56 to 46 ^a 79 56 46 66	Image: Note of the second s	Image: AC Mains Port □ DC Power Port □ Other M Quasi-peak Average Quasi-peak Average Quasi-peak 66 to 56 ^a 56 to 46 ^a 79 66 84 to 74 ^a 56 46 66 60 74	AC Mains Port DC Port Other Wire Port Quasi-peak Average Quasi-peak Average Quasi-peak Average 66 to 56 ^a 56 to 46 ^a 79 66 84 to 74 ^a 74 to 64 ^a 56 46 66 60 74 64		

5.3.Test Procedure

- a. The EUT was placed on a wooden table 0.1m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. Configure the EUT and support devices as per section 5.1.
- c. All cables and support devices were positioned as per EN IEC 61000-6-3.
- d. Connect mains power port of the EUT to a line impedance stabilization network (LISN). Wired network port to Asymmetric Artificial Network (AAN).
- e. Connect all support devices to the other LISN and AAN, if needed.


- f. Turn on the EUT and all support devices, and make it run stably.
- g. Set the detector and measurement bandwidth of test-receiver system as per EN IEC 61000-6-3.
- h. Scan the frequency range from 150KHz to 30MHz at each side of AC line for conducted interference checking
- i. Repeat the above scans in each mode and record the test data.

5.4.Test Results

PASS.

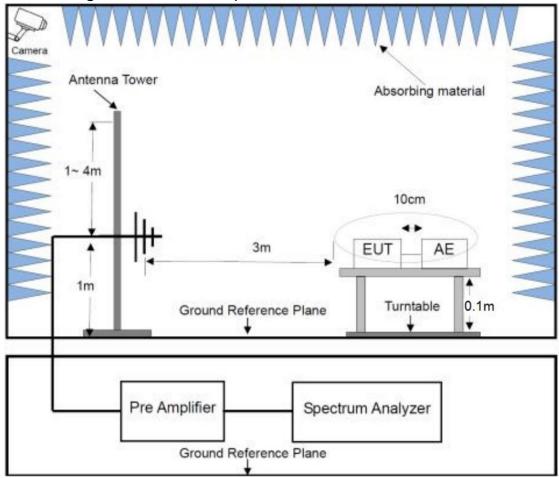
Please refer to the following pages.

E.U.T:		SOLAR	POWE	R SYST	EM	Mo	odel Na	ame	:	HBP18-3024
Tempe	erature:	26 °C					Relative Humidity:			60%
Pressu	ure:	1011hPa					Test Voltage:			AC 230V 50Hz
Test M	lode:	AC Input mode+ Battery + load					ase:			Neutral
		-								
Test D	ate:	2022-1	1-02							
	50 X						EN IEC		10-6-3 Conduct	ction(QP)
0	2.0		11-44/444 411/11/11					W	h h	20.000
0	0.150		0.5		(MHz)		5	W	h h	30.000
No.	0.150 Frequency	Factor	Reading	Level	Limit	Margin		P/F	Remark	30.000
	0.150	Factor (dB) 10.23	-	Level (dBuV) 48.60		Margin (dB) -15.26	Detector	P/F P	Remark	30.000
No.	0.150 Frequency (MHz)	(dB)	Reading (dBuV)	(dBuV)	Limit (dBuV)	(dB)	Detector		Remark	30.000
No.	0.150 Frequency (MHz) 0.1940	(dB) 10.23	Reading (dBuV) 38.37	(dBuV) 48.60	Limit (dBuV) 63.86	(dB) -15.26	Detector QP AVG	Ρ	Remark	30.000
No.	0.150 Frequency (MHz) 0.1940 0.1940	(dB) 10.23 10.23	Reading (dBuV) 38.37 36.97	(dBuV) 48.60 47.20	Limit (dBuV) 63.86 53.86	(dB) -15.26 -6.66	Detector QP AVG	P P	Remark	30.000
No. 1 2 3	0.150 Frequency (MHz) 0.1940 0.1940 0.3899	(dB) 10.23 10.23 10.38	Reading (dBuV) 38.37 36.97 33.82	(dBuV) 48.60 47.20 44.20	Limit (dBuV) 63.86 53.86 58.06	(dB) -15.26 -6.66 -13.86	Detector QP AVG QP AVG	P P P	Remark	30.000
No. 1 2 3 4	0.150 Frequency (MHz) 0.1940 0.1940 0.3899 0.3899	(dB) 10.23 10.23 10.38 10.38	Reading (dBuV) 38.37 36.97 33.82 31.72	(dBuV) 48.60 47.20 44.20 42.10	Limit (dBuV) 63.86 53.86 58.06 48.06	(dB) -15.26 -6.66 -13.86 -5.96	Detector QP AVG QP AVG	P P P	Remark	30.000
No. 1 2 3 4 5	0.150 Frequency (MHz) 0.1940 0.1940 0.3899 0.3899 1.4134	(dB) 10.23 10.23 10.38 10.38 10.41	Reading (dBuV) 38.37 36.97 33.82 31.72 30.39	(dBuV) 48.60 47.20 44.20 42.10 40.80	Limit (dBuV) 63.86 53.86 58.06 48.06 56.00	(dB) -15.26 -6.66 -13.86 -5.96 -15.20	Detector QP AVG QP AVG QP	P P P P	Remark	30.000
No. 1 2 3 4 5 6	0.150 Frequency (MHz) 0.1940 0.1940 0.3899 0.3899 1.4134 1.4134	(dB) 10.23 10.23 10.38 10.38 10.41 10.41	Reading (dBuV) 38.37 36.97 33.82 31.72 30.39 26.99	(dBuV) 48.60 47.20 44.20 42.10 40.80 37.40	Limit (dBuV) 63.86 53.86 58.06 48.06 56.00 46.00	(dB) -15.26 -6.66 -13.86 -5.96 -15.20 -8.60	Detector QP AVG QP AVG QP AVG	P P P P	Remark	30.000
No. 1 2 3 4 5 6 7	0.150 Frequency (MHz) 0.1940 0.1940 0.3899 0.3899 0.3899 1.4134 1.4134 8.5937	(dB) 10.23 10.23 10.38 10.38 10.41 10.41 10.58	Reading (dBuV) 38.37 36.97 33.82 31.72 30.39 26.99 42.72	(dBuV) 48.60 47.20 44.20 42.10 40.80 37.40 53.30	Limit (dBuV) 63.86 53.86 58.06 48.06 56.00 46.00 60.00	(dB) -15.26 -6.66 -13.86 -5.96 -15.20 -8.60 -6.70	Detector QP AVG QP AVG QP AVG QP	P P P P P P	Remark	30.000
No. 1 2 3 4 5 6 7 8	0.150 Frequency (MHz) 0.1940 0.3899 0.3899 0.3899 1.4134 1.4134 8.5937 8.6897	(dB) 10.23 10.23 10.38 10.38 10.41 10.41 10.58 10.58	Reading (dBuV) 38.37 36.97 33.82 31.72 30.39 26.99 42.72 36.02	(dBuV) 48.60 47.20 44.20 42.10 40.80 37.40 53.30 46.60	Limit (dBuV) 63.86 53.86 58.06 48.06 56.00 46.00 60.00 50.00	(dB) -15.26 -6.66 -13.86 -5.96 -15.20 -8.60 -6.70 -3.40	Detector QP AVG QP AVG QP AVG QP AVG	P P P P P P P P	Remark	30.000
No. 1 2 3 4 5 6 7 8 9	0.150 Frequency (MHz) 0.1940 0.3899 0.3899 0.3899 1.4134 1.4134 8.5937 8.6897 17.3819	(dB) 10.23 10.23 10.38 10.38 10.41 10.41 10.58 10.58 10.58	Reading (dBuV) 38.37 36.97 33.82 31.72 30.39 26.99 42.72 36.02 44.75	(dBuV) 48.60 47.20 44.20 42.10 40.80 37.40 53.30 46.60 55.60	Limit (dBuV) 63.86 53.86 58.06 48.06 56.00 46.00 60.00 50.00 60.00	(dB) -15.26 -6.66 -13.86 -5.96 -15.20 -8.60 -6.70 -3.40 -4.40	Detector QP AVG QP AVG QP AVG QP AVG QP	P P P P P P P P P	Remark	30.000

E.U.T	Γ:	SO	LAR PO	WER S	YSTEM		Model	Nar	me :	HBP18-3024	
Temp	perature:	26	°C				Relative Humidity:			60%	
Press	sure:	10	11hPa				Test Voltage:			PV 100V	
			-	odor Ba	ottony ±						
Test	est Mode: PV Input mode+ Battery + load							:		Line1	
Test	Date:	202	22-11-02	-							
	100.0 dBuV		101 11 11	A.102		141					
		X						EN	N61000-6-3 Cond	luction_QP	
	50		Num		hantywethianawa hantywethianawa	anananya Malama	ward and	λ ΛγΛ	W. Langer	M peak	
	0.0		0.5		hunganthi unaang nanganthilandan (MHz)	an a	and and a	λų. Λγ	What Lagran		
	0.0		0.5		hunhaithunhunh hunhaithunhun (MHz)	an a	s	λ. Λ		(mulavg	
No.	0.0 0.150	Factor	Reading	Level	Limit	Margin	5 Detector	P/F	Remark	(mulavg	
No.	0.0	Factor (dB) 10.26	1230	Level (dBuV) 46.30		Margin (dB)		P/F P	Remark	(mulavg	
	0.0 0.150 Frequency (MHz)	(dB)	Reading (dBuV)	(dBuV)	Limit (dBuV)	(dB)	Detector AVG		Remark	(mulavg	
1	0.0 0.150 Frequency (MHz) 0.2207	(dB) 10.26	Reading (dBuV) 36.04	(dBuV) 46.30	Limit (dBuV) 52.79	(dB) -6.49	Detector AVG QP	Р	Remark	(mulave	
1	0.0 0.150 Frequency (MHz) 0.2207 0.2416	(dB) 10.26 10.28	Reading (dBuV) 36.04 40.52	(dBuV) 46.30 50.80	Limit (dBuV) 52.79 62.04	(dB) -6.49 -11.24	Detector AVG QP	P P	Remark	(mulave	
1 2 3	0.0 0.150 Frequency (MHz) 0.2207 0.2416 0.3017	(dB) 10.26 10.28 10.36	Reading (dBuV) 36.04 40.52 39.44	(dBuV) 46.30 50.80 49.80	Limit (dBuV) 52.79 62.04 60.19	(dB) -6.49 -11.24 -10.39	Detector AVG QP QP AVG	P P P	Remark	(mulave	
1 2 3 4	0.0 0.150 Frequency (MHz) 0.2207 0.2416 0.3017 0.3165	(dB) 10.26 10.28 10.36 10.36	Reading (dBuV) 36.04 40.52 39.44 32.94	(dBuV) 46.30 50.80 49.80 43.30	Limit (dBuV) 52.79 62.04 60.19 49.80	(dB) -6.49 -11.24 -10.39 -6.50	Detector AVG QP QP AVG	P P P	Remark	(mulave	
1 2 3 4 5	0.0 0.150 Frequency (MHz) 0.2207 0.2416 0.3017 0.3165 1.1592	(dB) 10.26 10.28 10.36 10.36 10.51	Reading (dBuV) 36.04 40.52 39.44 32.94 33.39	(dBuV) 46.30 50.80 49.80 43.30 43.90	Limit (dBuV) 52.79 62.04 60.19 49.80 56.00	(dB) -6.49 -11.24 -10.39 -6.50 -12.10	Detector AVG QP QP AVG QP AVG	P P P P	Remark	(mulave	
1 2 3 4 5 6	0.0 0.150 Frequency (MHz) 0.2207 0.2416 0.3017 0.3165 1.1592 1.1592	(dB) 10.26 10.28 10.36 10.36 10.51 10.51	Reading (dBuV) 36.04 40.52 39.44 32.94 33.39 29.89	(dBuV) 46.30 50.80 49.80 43.30 43.90 40.40	Limit (dBuV) 52.79 62.04 60.19 49.80 56.00 46.00	(dB) -6.49 -11.24 -10.39 -6.50 -12.10 -5.60	Detector AVG QP QP AVG QP AVG QP	P P P P	Remark	(mulave	
1 2 3 4 5 6 7	0.0 0.150 Frequency (MHz) 0.2207 0.2416 0.3017 0.3165 1.1592 1.1592 1.1592 5.9291	(dB) 10.26 10.28 10.36 10.36 10.51 10.51 10.55	Reading (dBuV) 36.04 40.52 39.44 32.94 33.39 29.89 32.35	(dBuV) 46.30 50.80 49.80 43.30 43.90 40.40 42.90	Limit (dBuV) 52.79 62.04 60.19 49.80 56.00 46.00 60.00	(dB) -6.49 -11.24 -10.39 -6.50 -12.10 -5.60 -17.10	Detector AVG QP QP AVG QP AVG QP	P P P P P	Remark	(mulave	
1 2 3 4 5 6 7 8	6.0 0.150 Frequency (MHz) 0.2207 0.2416 0.3017 0.3165 1.1592 1.1592 1.1592 1.1592 1.1592 1.1592 1.0243	(dB) 10.26 10.28 10.36 10.51 10.51 10.55 10.55	Reading (dBuV) 36.04 40.52 39.44 32.94 33.39 29.89 32.35 27.95	(dBuV) 46.30 50.80 49.80 43.30 43.90 43.90 40.40 42.90 38.50	Limit (dBuV) 52.79 62.04 60.19 49.80 56.00 46.00 60.00 50.00	(dB) -6.49 -11.24 -10.39 -6.50 -12.10 -5.60 -17.10 -11.50	Detector AVG QP AVG QP AVG QP AVG AVG	P P P P P P P	Remark	(mulavg	
1 2 3 4 5 6 7 8 9	0.0 0.150 Frequency (MHz) 0.2207 0.2416 0.3017 0.3165 1.1592 1.1592 1.1592 5.9291 6.0243 9.8085	(dB) 10.26 10.28 10.36 10.51 10.51 10.55 10.55 10.67	Reading (dBuV) 36.04 40.52 39.44 32.94 33.39 29.89 32.35 27.95 31.13	(dBuV) 46.30 50.80 49.80 43.30 43.90 40.40 42.90 38.50 41.80	Limit (dBuV) 52.79 62.04 60.19 49.80 56.00 46.00 60.00 50.00 50.00	(dB) -6.49 -11.24 -10.39 -6.50 -12.10 -5.60 -17.10 -11.50 -8.20	Detector AVG QP AVG QP AVG QP AVG AVG AVG QP	P P P P P P P P	Remark	GrutAVG	

E.U.T	:		LAR PO	WVER S	YSIEM		Model	Nar	ne :	HBP18-3024	
Temp	erature:	26°	С				Relative Humidity:			60%	
Press	sure:	101	I1hPa				Test Voltage:			PV 100V	
Test N	Mode:	PV loa	Input m d	ode+ Ba	attery +		Phase:			Neutral	
Test [Date:	202	22-11-02)						-	
	100.0 dB-4/										
1	108.0 dBuV		1 1 1					ΤŤ			
								EN	161000-6-3 Condu	ction_QP	
	0.0				hele water and	when the	. And the second second	AWW W	STIGED 6-3 Conduct	peak AVG	
			0.5		Methodowa Martin Hall-martinet (MHz)	ware and	5	AWW W	STIGED 6-3 Conduct	1	
No.	0.0 0.150	Factor	Reading	Level	Limit	Margin	5 Detector	P/F	Remark	AVG	
No.	0.0	Factor (dB) 10.34	2630	Level (dBuV) 45.30		Margin (dB)		P/F		AVG	
	0.0 0.150 Frequency (MHz)	(dB)	Reading (dBuV)	(dBuV)	Limit (dBuV)	(dB)	Detector AVG			AVG	
1	0.0 0.150 Frequency (MHz) 0.2816	(dB) 10.34	Reading (dBuV) 34.96	(dBuV) 45.30	Limit (dBuV) 50.77	(dB) -5.47	Detector AVG QP	Р		AVG	
1 2	0.0 0.150 Frequency (MHz) 0.2816 0.3017	(dB) 10.34 10.36	Reading (dBuV) 34.96 38.94	(dBuV) 45.30 49.30	Limit (dBuV) 50.77 60.19	(dB) -5.47 -10.89	Detector AVG QP	P P		AVG	
1 2 3	0.0 0.150 Frequency (MHz) 0.2816 0.3017 1.0596	(dB) 10.34 10.36 10.52	Reading (dBuV) 34.96 38.94 32.38	(dBuV) 45.30 49.30 42.90	Limit (dBuV) 50.77 60.19 56.00	(dB) -5.47 -10.89 -13.10	Detector AVG QP QP AVG	P P P		AVG	
1 2 3 4	0.0 0.150 Frequency (MHz) 0.2816 0.3017 1.0596 1.1169	(dB) 10.34 10.36 10.52 10.51	Reading (dBuV) 34.96 38.94 32.38 26.89	(dBuV) 45.30 49.30 42.90 37.40	Limit (dBuV) 50.77 60.19 56.00 46.00	(dB) -5.47 -10.89 -13.10 -8.60	Detector AVG QP QP AVG	P P P		Lave .	
1 2 3 4 5	0.0 0.150 Frequency (MHz) 0.2816 0.3017 1.0596 1.1169 5.3897	(dB) 10.34 10.36 10.52 10.51 10.56	Reading (dBuV) 34.96 38.94 32.38 26.89 36.74	(dBuV) 45.30 49.30 42.90 37.40 47.30	Limit (dBuV) 50.77 60.19 56.00 46.00 60.00	(dB) -5.47 -10.89 -13.10 -8.60 -12.70	Detector AVG QP QP AVG QP	P P P P		Lave .	
1 2 3 4 5 6	0.0 0.150 Frequency (MHz) 0.2816 0.3017 1.0596 1.1169 5.3897 5.5346	(dB) 10.34 10.36 10.52 10.51 10.56 10.55	Reading (dBuV) 34.96 38.94 32.38 26.89 36.74 29.75	(dBuV) 45.30 49.30 42.90 37.40 47.30 40.30	Limit (dBuV) 50.77 60.19 56.00 46.00 60.00 50.00	(dB) -5.47 -10.89 -13.10 -8.60 -12.70 -9.70	Detector AVG QP QP AVG AVG AVG	P P P P		Lave .	
1 2 3 4 5 6 7	0.0 0.150 Frequency (MHz) 0.2816 0.3017 1.0596 1.1169 5.3897 5.5346 8.4557	(dB) 10.34 10.36 10.52 10.51 10.56 10.55 10.62	Reading (dBuV) 34.96 38.94 32.38 26.89 36.74 29.75 34.98	(dBuV) 45.30 49.30 42.90 37.40 47.30 40.30 45.60	Limit (dBuV) 50.77 60.19 56.00 46.00 60.00 50.00 50.00	(dB) -5.47 -10.89 -13.10 -8.60 -12.70 -9.70 -4.40	Detector AVG QP QP AVG AVG AVG	P P P P P P		Lave .	
1 2 3 4 5 6 7 8	0.0 0.150 Frequency (MHz) 0.2816 0.3017 1.0596 1.1169 5.3897 5.5346 8.4557 8.5007	(dB) 10.34 10.36 10.52 10.51 10.56 10.55 10.62 10.62	Reading (dBuV) 34.96 38.94 32.38 26.89 36.74 29.75 34.98 39.28	(dBuV) 45.30 49.30 42.90 37.40 47.30 40.30 45.60 49.90	Limit (dBuV) 50.77 60.19 56.00 46.00 60.00 50.00 50.00 60.00	(dB) -5.47 -10.89 -13.10 -8.60 -12.70 -9.70 -4.40 -10.10	Detector AVG QP QP AVG QP AVG AVG QP	P P P P P P P		AVG	
1 2 3 4 5 6 7 8 9	0.0 0.150 Frequency (MHz) 0.2816 0.3017 1.0596 1.1169 5.3897 5.5346 8.4557 8.5007 17.2907	(dB) 10.34 10.36 10.52 10.51 10.55 10.62 10.62 10.83	Reading (dBuV) 34.96 38.94 32.38 26.89 36.74 29.75 34.98 39.28 35.57	(dBuV) 45.30 49.30 42.90 37.40 47.30 40.30 45.60 49.90 46.40	Limit (dBuV) 50.77 60.19 56.00 46.00 60.00 50.00 50.00 60.00 50.00	(dB) -5.47 -10.89 -13.10 -8.60 -12.70 -9.70 -4.40 -10.10 -3.60	Detector AVG QP AVG AVG AVG AVG AVG AVG	P P P P P P P P P		Lave .	

E.U.1	T:	SOLA	r powe	ER SYS	TEM	M	lodel N	lam	e :	HBP18-3024	
Temp	perature:	26 ℃					Relative Humidity:			60%	
Pres	sure:	1011hPa					Test Voltage:			DC 24V	
Test	Mode:	Inverte	er mode				hase:			Line1	
Test	Date:	2022-2	11-02								
	100.0 dBuV						EN I		000-6-3 Conduct	stion(QP)	
	0.0	-lalad							MAR ^E	MW WW AVG	
	0.0	- Inden	0.5		(MHz)		5			30.000	
No.	0.150 Frequency	Factor (dB)	0.5 Reading (dBuV)	Level (dBuV)	(MHz)	Margin (dB)	5 Detector	P/F	Remark		
No.	0.150		Reading		Limit			P/F P	Remark		
	0.150 Frequency (MHz)	(dB)	Reading (dBuV)	(dBuV)	Limit (dBuV)	(dB)	Detector		Remark		
1	0.150 Frequency (MHz) 1.6294	(dB) 10.43	Reading (dBuV) 25.97	(dBuV) 36.40	Limit (dBuV) 56.00	(dB) -19.60	Detector QP AVG	Ρ	Remark		
1 2	0.150 Frequency (MHz) 1.6294 1.7016	(dB) 10.43 10.44	Reading (dBuV) 25.97 22.96	(dBuV) 36.40 33.40	Limit (dBuV) 56.00 46.00	(dB) -19.60 -12.60	Detector QP AVG	P P	Remark		
1 2 3	0.150 Frequency (MHz) 1.6294 1.7016 8.5899	(dB) 10.43 10.44 10.58	Reading (dBuV) 25.97 22.96 37.82	(dBuV) 36.40 33.40 48.40	Limit (dBuV) 56.00 46.00 60.00	(dB) -19.60 -12.60 -11.60	Detector QP AVG QP	P P P	Remark		
1 2 3 4	0.150 Frequency (MHz) 1.6294 1.7016 8.5899 8.5899	(dB) 10.43 10.44 10.58 10.58	Reading (dBuV) 25.97 22.96 37.82 35.82	(dBuV) 36.40 33.40 48.40 46.40	Limit (dBuV) 56.00 46.00 60.00 50.00	(dB) -19.60 -12.60 -11.60 -3.60	Detector QP AVG QP AVG	P P P	Remark		
1 2 3 4 5	0.150 Frequency (MHz) 1.6294 1.7016 8.5899 8.5899 14.8376	(dB) 10.43 10.44 10.58 10.58 10.69	Reading (dBuV) 25.97 22.96 37.82 35.82 35.61	(dBuV) 36.40 33.40 48.40 46.40 46.30	Limit (dBuV) 56.00 46.00 60.00 50.00 50.00	(dB) -19.60 -12.60 -11.60 -3.60 -3.70	Detector QP AVG QP AVG AVG	P P P	Remark		
1 2 3 4 5 6	0.150 Frequency (MHz) 1.6294 1.7016 8.5899 8.5899 8.5899 14.8376 15.3338	(dB) 10.43 10.44 10.58 10.58 10.69 10.71	Reading (dBuV) 25.97 22.96 37.82 35.82 35.61 38.09	(dBuV) 36.40 33.40 48.40 46.40 46.30 48.80	Limit (dBuV) 56.00 46.00 60.00 50.00 50.00 60.00	(dB) -19.60 -12.60 -11.60 -3.60 -3.70 -11.20	Detector QP AVG QP AVG AVG QP AVG	P P P P	Remark		
1 2 3 4 5 6 7	0.150 Frequency (MHz) 1.6294 1.7016 8.5899 8.5899 8.5899 14.8376 15.3338 17.2539	(dB) 10.43 10.44 10.58 10.58 10.69 10.71 10.84	Reading (dBuV) 25.97 22.96 37.82 35.82 35.61 38.09 35.96	(dBuV) 36.40 33.40 48.40 46.40 46.30 48.80 46.80	Limit (dBuV) 56.00 46.00 60.00 50.00 50.00 60.00 50.00	(dB) -19.60 -12.60 -3.60 -3.70 -11.20 -3.20	Detector QP AVG QP AVG AVG QP AVG	P P P P P P	Remark		
1 2 3 4 5 6 7 8	0.150 Frequency (MHz) 1.6294 1.7016 8.5899 8.5899 14.8376 15.3338 17.2539 17.7499	(dB) 10.43 10.44 10.58 10.58 10.69 10.71 10.84 10.87	Reading (dBuV) 25.97 22.96 37.82 35.82 35.61 38.09 35.96 31.13	(dBuV) 36.40 33.40 48.40 46.40 46.30 48.80 46.80 42.00	Limit (dBuV) 56.00 46.00 60.00 50.00 50.00 60.00 60.00	(dB) -19.60 -12.60 -3.60 -3.70 -11.20 -3.20 -18.00	Detector QP AVG QP AVG AVG QP AVG QP	P P P P P P P P	Remark		
1 2 3 4 5 6 7 8 9	0.150 Frequency (MHz) 1.6294 1.7016 8.5899 8.5899 14.8376 15.3338 17.2539 17.7499 24.2220	(dB) 10.43 10.44 10.58 10.58 10.69 10.71 10.84 10.87 11.02	Reading (dBuV) 25.97 22.96 37.82 35.82 35.61 38.09 35.96 31.13 41.08	(dBuV) 36.40 33.40 48.40 46.40 46.30 48.80 46.80 42.00 52.10	Limit (dBuV) 56.00 46.00 60.00 50.00 50.00 60.00 60.00 60.00	(dB) -19.60 -12.60 -3.60 -3.70 -11.20 -3.20 -18.00 -7.90	Detector QP AVG AVG AVG AVG QP AVG QP QP	P P P P P P P P P	Remark		



E.U.1	Г:	SOLA	R POWE	R SYS	ГЕМ	M	lodel N	lam	e:	HBP18	-3024
Temp	perature:	26 ℃					Relative Humidity:			60%	
Press	sure:	1011hPa					Test Voltage:			DC 24V	
 Test	Mode:	Inverte	er mode				hase:			Neutral	
1031							nase.			Incutia	
Test	Date:	2022-2	11-02								
8	100.0 dBuV							TT			
	50							EC 611	000-6-3 Conduct	ction(QP)	ň
	MA	Andrey	hababab			, Ma		N			AVG
	0.0	Annahud	0.5	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	ала		5			3	M
	0.150	- Jur had				Margin				3	AVG
No.		Factor (dB)	0.5 Reading (dBuV)	Level (dBuV)	(MHz)	Margin (dB)	5 Detector	P/F	Remark	3	AVG
No.	0.150 Frequency		Reading		Limit			P/F P	Remark	3	AVG
	0.150 Frequency (MHz)	(dB)	Reading (dBuV)	(dBuV)	Limit (dBuV)	(dB)	Detector		Remark	3	AVG
1	0.150 Frequency (MHz) 1.0660	(dB) 10.38	Reading (dBuV) 24.12	(dBuV) 34.50	Limit (dBuV) 56.00	(dB) -21.50	Detector QP AVG	Ρ	Remark	3	AVG
1 2	0.150 Frequency (MHz) 1.0660 1.0660	(dB) 10.38 10.38	Reading (dBuV) 24.12 20.42	(dBuV) 34.50 30.80	Limit (dBuV) 56.00 46.00	(dB) -21.50 -15.20	Detector QP AVG AVG	P P	Remark	3	AVG
1 2 3	0.150 Frequency (MHz) 1.0660 1.0660 2.5619	(dB) 10.38 10.38 10.43	Reading (dBuV) 24.12 20.42 21.17	(dBuV) 34.50 30.80 31.60	Limit (dBuV) 56.00 46.00 46.00	(dB) -21.50 -15.20 -14.40	Detector QP AVG AVG QP	P P P	Remark	3	AVG
1 2 3 4	0.150 Frequency (MHz) 1.0660 1.0660 2.5619 3.1299	(dB) 10.38 10.38 10.43 10.42	Reading (dBuV) 24.12 20.42 21.17 22.98	(dBuV) 34.50 30.80 31.60 33.40	Limit (dBuV) 56.00 46.00 46.00 56.00	(dB) -21.50 -15.20 -14.40 -22.60	Detector QP AVG AVG QP	P P P	Remark	3	AVG
1 2 3 4 5	0.150 Frequency (MHz) 1.0660 1.0660 2.5619 3.1299 9.3215	(dB) 10.38 10.38 10.43 10.42 10.59	Reading (dBuV) 24.12 20.42 21.17 22.98 37.11	(dBuV) 34.50 30.80 31.60 33.40 47.70	Limit (dBuV) 56.00 46.00 46.00 56.00 60.00	(dB) -21.50 -15.20 -14.40 -22.60 -12.30	Detector QP AVG AVG QP QP	P P P	Remark	3	AVG
1 2 3 4 5 6	0.150 Frequency (MHz) 1.0660 2.5619 3.1299 9.3215 9.3215	(dB) 10.38 10.38 10.43 10.42 10.59 10.59	Reading (dBuV) 24.12 20.42 21.17 22.98 37.11 36.01	(dBuV) 34.50 30.80 31.60 33.40 47.70 46.60	Limit (dBuV) 56.00 46.00 46.00 56.00 60.00 50.00	(dB) -21.50 -15.20 -14.40 -22.60 -12.30 -3.40	Detector QP AVG AVG QP QP AVG	P P P P	Remark	3	AVG
1 2 3 4 5 6 7	0.150 Frequency (MHz) 1.0660 1.0660 2.5619 3.1299 9.3215 9.3215 16.8699	(dB) 10.38 10.38 10.43 10.42 10.59 10.59 10.81	Reading (dBuV) 24.12 20.42 21.17 22.98 37.11 36.01 36.09	(dBuV) 34.50 30.80 31.60 33.40 47.70 46.60 46.90	Limit (dBuV) 56.00 46.00 46.00 56.00 60.00 50.00 50.00	(dB) -21.50 -15.20 -14.40 -22.60 -12.30 -3.40 -3.10	Detector QP AVG AVG QP QP AVG AVG	P P P P P	Remark	3	AVG
1 2 3 4 5 6 7 8	0.150 Frequency (MHz) 1.0660 2.5619 3.1299 9.3215 9.3215 16.8699 17.3699	(dB) 10.38 10.38 10.43 10.42 10.59 10.59 10.81 10.85	Reading (dBuV) 24.12 20.42 21.17 22.98 37.11 36.01 36.09 40.55	(dBuV) 34.50 30.80 31.60 33.40 47.70 46.60 46.90 51.40	Limit (dBuV) 56.00 46.00 46.00 56.00 60.00 50.00 50.00 60.00	(dB) -21.50 -15.20 -14.40 -22.60 -12.30 -3.40 -3.40 -3.10 -8.60	Detector QP AVG AVG QP QP AVG AVG QP AVG	P P P P P P P P	Remark	3	AVG
1 2 3 4 5 6 7 8 9	0.150 Frequency (MHz) 1.0660 2.5619 3.1299 9.3215 9.3215 16.8699 17.3699 23.9176	(dB) 10.38 10.43 10.42 10.59 10.59 10.81 10.85 11.02	Reading (dBuV) 24.12 20.42 21.17 22.98 37.11 36.01 36.09 40.55 30.18	(dBuV) 34.50 30.80 31.60 33.40 47.70 46.60 46.90 51.40 41.20	Limit (dBuV) 56.00 46.00 46.00 56.00 50.00 50.00 50.00 60.00 50.00	(dB) -21.50 -15.20 -22.60 -12.30 -3.40 -3.10 -8.60 -8.80	Detector QP AVG AVG QP AVG AVG QP AVG QP	P P P P P P P P P	Remark	3	AVG

6.RADIATED EMISSION MEASUREMENT

6.1.Block Diagram of Test Setup

6.2.Limit of Radiated Emission Measurement

Below 1 GHz:

Frequency range MHz	Quasi-peak limits dB(μV/m)	Distance m	Detector type / Bandwidth
30 to 230	40	3	120 KHz
230 to 1000	47	3	120 KHz
Note: The lower limit shall a	pply at the transition frequency.		

Above 1 GHz :

ADOVE I GHZ.				
Frequency range MHz	Peak limits dB(μV/m)	Average limits dB(μV/m)	Distance m	Detector type / Bandwidth
1000 to 3000	70	50	3	1MHz
3000 to 6000	74	54	3	1MHz

Required highest frequency for radiated measurement

	Highest inter	nal frequency* (F _x)	Highest measured frequency
	Fx≤	108 MHz	1 GHz
	108 MHz	< F _x ≤ 500 MHz	2 GHz
	500 MHz	z < F _x ≤ 1 GHz	5 GHz
	F _x	> 1 GHz	5 × F_x up to a maximum of 6 GHz
Note		ighest fundamental frequenc it operates.	y generated or used within the EUT or highest frequency at
	2. Where	the F_x is not known, tests are	e performed up to 6 GHz.

6.3.Test Procedure

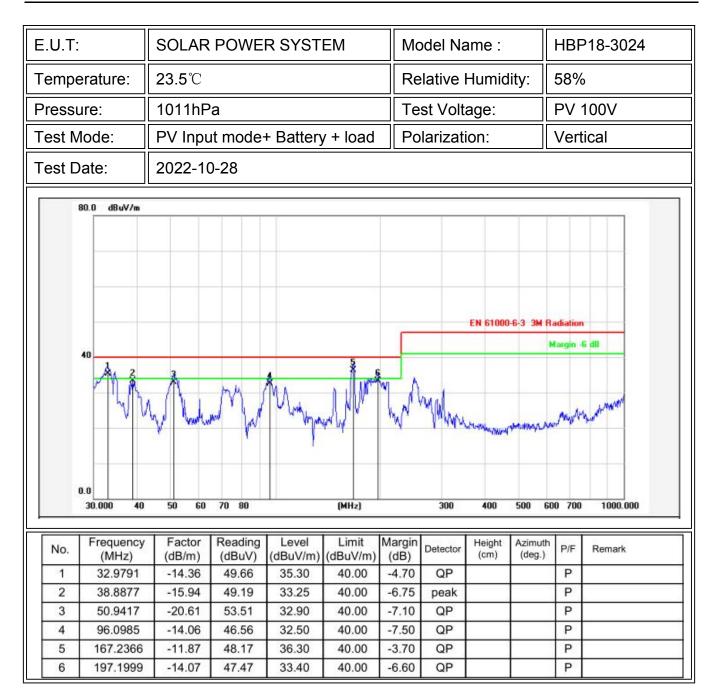
- a. The EUT was placed on a rotatable wooden table top 0.1m above ground.
- b. The EUT was set 3m away from the receiving antenna which was mounted on the top of a variable height antenna tower.
- c. Configure the EUT and support devices as per section 6.1.
- d. All cables and support devices were positioned as per EN IEC 61000-6-3.
- e. Connect mains power port of the EUT to the outlet socket under the turntable and connect all other support devices to other outlet socket under the turntable.
- f. Turn on the EUT and all support devices, and make it run stably.
- g. Set the detector and measurement bandwidth of test-receiver system as per EN IEC 61000-6-3.
- h. Scan the frequency range from 30MHz to 1000MHz for radiation emissions checking.
- i. Emissions were scanned and measured rotating the EUT from 0 to 360 degrees and positioning the antenna from 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- j. Repeat the above scans in each mode and channel and record the test data.

6.4.Test Results

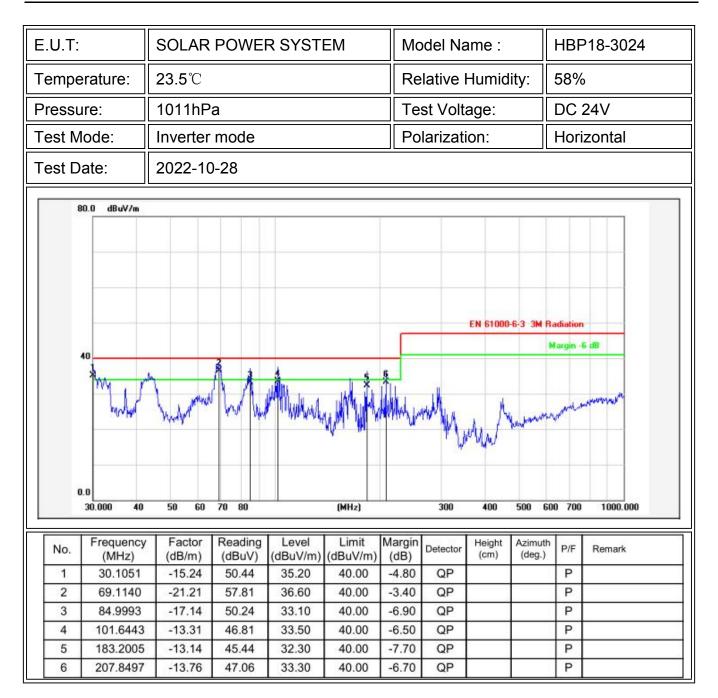
PASS.

Please refer to the following pages.

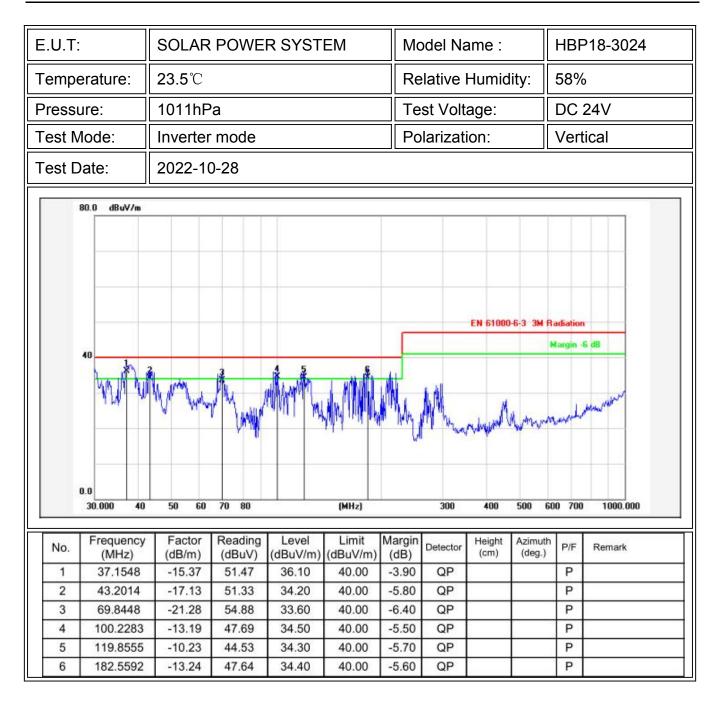
E.U.T:	:	SOLAR	POWE	R SYST	EM	Mo	odel Na	ame :		HBF	P18-3024	
Tempe	erature:	23.5 ℃			Rela			elative Humidity:			58%	
Pressu	ure:	1011hP	'a			Те	Test Voltage:			AC 230V 50Hz		
Test M	Node:	AC Inpu	ut mode-	+ Battery	y + load	Po	larizat	ion:		Hori	izontal	
Test D	Date:	2022-10	0-28									
	80.0 dBuV/m											
								EN 61000	1-6-3 - 3M Ra	adiation	n	
	40 1 1 1 1 1	M	M	An	wh		myum	Well Sear Mana		largin -		
		50 60	70 80	An n	(MHz)		300	^{اری} 400	500 600	hum	Money	
No.	0.0	50 60 Factor (dB/m)	70 80 Reading (dBuV)	Level (dBuV/m)	(MHz)	Margin (dB)			or-parterio tarit	hum	Money	
	0.0 30.000 40	Factor	Reading		Limit		300	400 Height	500 600	0 700	More and 1000.000	
No.	0.0 30.000 40 Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	(dBuV/m)	Limit (dBuV/m)	(dB)	300 Detector	400 Height	500 600	0 700	More and 0 1000.000	
No.	0.0 30.000 40 Frequency (MHz) 33.7986	Factor (dB/m) -16.84	Reading (dBuV) 51.44	(dBuV/m) 34.60	Limit (dBuV/m) 40.00	(dB) -5.40	300 Detector QP	400 Height	500 600	0 700 P/F P	More and 0 1000.000	
No.	0.0 30.000 40 Frequency (MHz) 33.7986 49.3594	Factor (dB/m) -16.84 -19.95	Reading (dBuV) 51.44 56.45	(dBuV/m) 34.60 36.50	Limit (dBuV/m) 40.00 40.00	(dB) -5.40 -3.50	300 Detector QP QP	400 Height	500 600	0 700 P/F P	More and 0 1000.000	
No. 1 2 3	0.0 30.000 40 Frequency (MHz) 33.7986 49.3594 76.2442	Factor (dB/m) -16.84 -19.95 -19.32	Reading (dBuV) 51.44 56.45 52.52	(dBuV/m) 34.60 36.50 33.20	Limit (dBuV/m) 40.00 40.00 40.00	(dB) -5.40 -3.50 -6.80	300 Detector QP QP QP	400 Height	500 600	0 700 P/F P P	More and 1000.000	

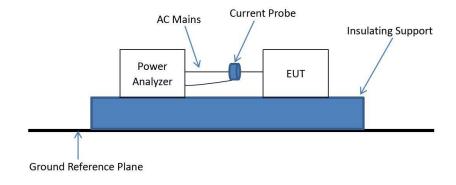


E.U.T:		SOLAR	POWE	R SYST	EM	Mo	odel Na	ame :		HBF	P18-3024	
Tempe	erature:	23.5 ℃			Relativ			e Humidity:			58%	
Pressu	ure:	1011hP	a			Test Voltage:				AC 230V 50Hz		
Test N	/lode:	AC Inpu	ut mode [.]	+ Batter	y + load	Pc	larizat	ion:		Ver	tical	
Test D	Date:	2022-10)-28									
	80.0 dBuV/m											
								EN 61000				
	40 MM	M	hurt	in m	when		vayaban		h	largin -		
	40 M 0.0 30.000 40	50 60	70 80	În Jon	(MHz)		100 300		1 1/10/2019/2-1/10	largin -	5 @ 	
No.	0.0	50 60	70 80 Reading (dBuV)	Level (dBuV/m)	Limit	Margin (dB)	300 Detector	wtwo.	1 1/10/2019/2-1/10	targin -	5 @ 	
	0.0 30.000 40	Factor	Reading		Limit			400 Height	500 60	1argin -	5 dB March 1999) 1000.000	
No.	0.0 30.000 40 Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	(dBuV/m)	Limit (dBuV/m)	(dB)	Detector	400 Height	500 60	4 argin - ,, /wy// 10 700	5 dB March 1999) 1000.000	
No.	0.0 30.000 40 Frequency (MHz) 33.3278	Factor (dB/m) -14.40	Reading (dBuV) 50.60	(dBuV/m) 36.20	Limit (dBuV/m) 40.00	(dB) -3.80	Detector QP	400 Height	500 60	(argin ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5 dB March 1999) 1000.000	
No.	0.0 30.000 40 Frequency (MHz) 33.3278 52.0251	Factor (dB/m) -14.40 -20.86	Reading (dBuV) 50.60 54.26	(dBuV/m) 36.20 33.40	Limit (dBuV/m) 40.00 40.00	(dB) -3.80 -6.60	Detector QP QP	400 Height	500 60	4argin ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5 dB March 1999) 1000.000	
No. 1 2 3	0.0 30.000 40 Frequency (MHz) 33.3278 52.0251 65.1144	Factor (dB/m) -14.40 -20.86 -21.98	Reading (dBuV) 50.60 54.26 58.18	(dBuV/m) 36.20 33.40 36.20	Limit (dBuV/m) 40.00 40.00 40.00	(dB) -3.80 -6.60 -3.80	Detector QP QP QP	400 Height	500 60	Aargin - ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5 dB March 1999) 1000.000	



E.U.T:		SOLAR	POWE	R SYST	EM	Мс	odel Na	ame :		HBF	P18-3024
Tempe	erature:	23.5 ℃						Relative Humidity:			/ 0
Pressu	ure:	1011hP	a		Те	Test Voltage:			PV 100V		
Test N	lode:	PV Inpu	It mode	+ Batter	y + load	Po	larizat	ion:		Hor	izontal
Test D	ate:	2022-10)-28								
8	60.0 d8uV/m										
		50 60	3 M M J J	with	MW Moord	7 \$	300		-6-3 - 3M Ra M	largin -	6 dB
	50.000 40	00 00			(Mriz)		300	400	500 604	0 700	1000.000
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	33.7986	-16.84	51.94	35.10	40.00	-4.90	QP			Р	
2	51.6613	-20.27	55.57	35.30	40.00	-4.70	QP			Р	
3	72.5913	-20.40	53.24	32.84	40.00	-7.16	peak			Ρ	
4	106.7587	-12.37	43.77	31.40	40.00	-8.60	peak			Р	
5	166.0680	-11.56	45.16	33.60	40.00	-6.40	QP			Р	
9	100.0000				10.00	0.10					





7.HARMONIC CURRENT EMISSION MEASUREMENT

7.1.Block Diagram of Test Setup

7.2.Test Limits

☑ Limits for equipment other than balanced three-phase equipment

Minimum R _{sce}			nonic cu	e individ rrent I _h // %			Admissible harmonic parameters %		
	I ₃	I ₅	<i>I</i> ₇	I ₉	<i>I</i> ₁₁	I ₁₃	THC/I _{ref}	PWHC / Iref	
33	21,6	10,7	7,2	3,8	3,1	2	23	23	
66	24	13	8	5	4	3	26	26	
120	27	15	10	6	5	4	30	30	
250	35	20	13	9	8	6	40	40	
≥350	41	24	15	12	10	8	47	47	

The relative values of even harmonics up to order 12 shall not exceed 16/h %. Even harmonics above order 12 are taken into account in *THC* and *PWHC* in the same way as odd order harmonics.

Linear interpolation between successive R_{sce} values is permitted.

a I_{ref} = reference current; I_h = harmonic current component.

□ Limits for balanced three-phase equipment

Minimum R _{sce}		Admissible harmonic cu	212000000 The Activity of the	e harmonic neters %		
3	15	<i>I</i> ₇	<i>I</i> ₁₁	I ₁₃	THC/Iref	PWHC/Iref
33	10,7	7,2	3,1	2	13	22
66	14	9	5	3	16	25
120	19	12	7	4	22	28
250	31	20	12	7	37	38
≥350	40	25	15	10	48	46

The relative values of even harmonics up to order 12 shall not exceed 16/h %. Even harmonics above order 12 are taken into account in *THC* and *PWHC* in the same way as odd order harmonics.

Linear interpolation between successive R_{sce} values is permitted.

^a I_{ref} = reference current; I_h = harmonic current component.

Minimum R _{sce}		Admissible harmonic cur %		e harmonic meters %		
	<i>I</i> ₅	<i>I</i> ₇	<i>I</i> ₁₁	I ₁₃	THC / Iref	PWHC/ Iref
33	10,7	7,2	3,1	2	13	22
≥120	40	25	15	10	48	46

□ Limits for balanced three-phase equipment under specified conditions(d,e,f)

Minimum R _{sce}		Admissible individual harmonic current I _h /I _{ref} ^a %											Admissible harmonic parameters %		
	<i>I</i> ₅	<i>I</i> ₇	I11	I ₁₃	I ₁₇	I ₁₉	I ₂₃	I 25	I ₂₉	I ₃₁	I ₃₅	I ₃₇	THC/ Iref	PWHC/ Iref	
33	10,7	7,2	3,1	2	2	1,5	1,5	1,5	1	1	1	1	13	22	
≥250	25	17,3	12,1	10,7	8,4	7,8	6,8	6,5	5,4	5,2	4,9	4,7	35	70	
≥250 or R _{SCE} equ f all harmor	ual to 33,	the rela	tive val	ues of e	ven ha	irmonio	cs up t	o order	12 shal					1000	
For R _{SCe} ≥ 25 harmonics fre	om I ₁₄ to	I40 not li	sted ab	ove sha	II not e	xceed	3 % of		all not e	exceed	16 <i>1h</i> %.	The r	elative va	lues of a	

For the following categories of equipment limits are not specified in this edition of the standard.

Note: Equipment with a rated power of 75W or less, other than lighting equipment.

7.3.Test Procedure

- a. The EUT was placed on a wooden table 0.1m above ground.
- b. Configure the EUT and support devices as per section 7.1.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. Set the EUT to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.
- e. Set correspondent test program and measurement time of the test system to measure the current harmonics emanated from EUT, and then record the test data.

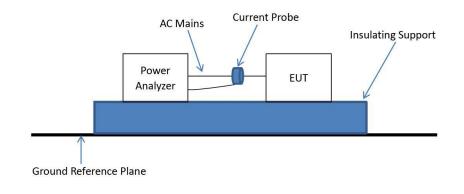
7.4.Test Results

PASS.

Please refer to the following pages.

EUT:	SOLAR POWER SYSTEM	M/N :	HBP18-3024
Test Mode:	AC Input mode+ Battery + load	Test Date:	2022-11-03
Tested by:	CRB		

Voltage (V):	227.9	Frequency (Hz):	50
Reference Current I ₁ (A):	16.17	Active input power (W):	3668
Apparent power(VA)	3686	Power Factor:	0.995
Test Times	2.5 min		


Minimum R _{sce} = 33		A ha		le harmonic neters %				
	I 3	I ₅	I 7	l 9	I 11	I ₁₃	THC/I _{ref}	PWHC/I _{ref}
Limit	21.6	10.7	7.2	3.8	3.1	2	23	23
Measured value	0.771	1.225	3.354	2.839	0.568	1.826	2.299	7.733
Verdict	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS

Minimum R _{sce} = 33		A ha		le harmonic neters %				
	I 2	4	I 6	I 8	I ₁₀	I ₁₂	THC/I _{ref}	PWHC/I _{ref}
Limit	8	4	2.6	2	1.6	1.3	23	23
Measured value	3.482	1.486	1.580	0.379	0.885	0.837	2.299	7.733
Verdict	PASS	PASS	PASS	PASS	PASS	PASS	PASS	PASS

8.VOLTAGE FLUCTUATIONS & FLICKER MEASUREMENT

8.1.Block Diagram of Test Setup

8.2.Test Limits

Test Item	Limit
P _{st} (Short-term flicker indicator.)	1.0
P _{lt} (Long-term flicker indicator.)	0.65
$T_{d(t)}(ms)$ (Maximum time that $d(t)$ exceeds 3.3%)	500
d _{max} (%) (Maximum relative voltage change.)	4
d _c (%) (Relative steady-state voltage change)	3.3

8.3.Test Procedure

- a. The EUT was placed on a wooden table 0.1m above ground.
- b. Configure the EUT and support devices as per section 8.1.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. Set the EUT to produce the most unfavorable sequence of voltage changes under normal operating conditions.
- e. Set correspondent test program and measurement time of the test system to measure the most unfavorable sequence of voltage changes from EUT, and then record the test data.

8.4.Test Results

PASS.

Please refer to the following pages.

EUT:	SOLAR POWER SYSTEM		M/N :	HBP1	8-3024
Test Mode:	AC Input mode+ Battery + load		Test Date:	2022-	11-03
Tested by:	CRB				
Voltage (V):	229.17	Frequ	uency (Hz):		50
Reference Current I ₁ (A):	16.17	Activ	e input power	(W):	3668
Apparent power(VA)	3686	Powe	er Factor:		0.995
Test Times	10 min				

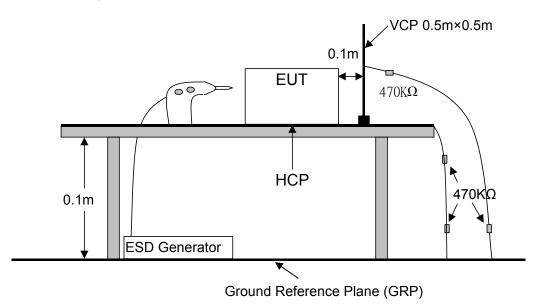
	L1	Limts	Result
Pst	0.04	1.00	PASS
Plt	0.00	0.65	PASS
dc(%)	0.00	3.30	PASS
dmax(%)	0.02	4.00	PASS
dt(s)	0	0.5	PASS

9.PERFORMANCE CRITERIA FOR IMMUNITY

The performance criteria are referred to the test standard: EN IEC 61000-6-1

The variety and the diversity of the apparatus within the scope of this standard makes it difficult to define precise criteria for the evaluation of the immunity test results. If, as a result of the application of the tests defined in this standard, the apparatus becomes dangerous or unsafe, the apparatus shall be deemed to have failed the test. A functional description and a definition of performance criteria, during or as a consequence of the EMC testing, shall be provided by the manufacturer and noted in the test report.

a) Performance Criterion A: The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonable except from the apparatus if used as intended.


B)Performance Criterion B:The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. No change of actual operation state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

c) Performance Criteria C: Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

10.ELECTROSTATIC DISCHARGE TEST

10.1.Block Diagram of Test Setup

10.2.Test Standard and Severity Levels

a. Test Standard:

Product standard	EN IEC 61000-6-1
Basic standard	IEC 61000-4-2
Performance criterion	В

b. Severity Levels:

Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)
1.	±2	±2
2.	±4	±4
3.	±6	±8
4.	±8	±15
X	Special	Special

Air Discharge:

Air discharges at slots and apertures and insulating surfaces. On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those are normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

Contact Discharge:

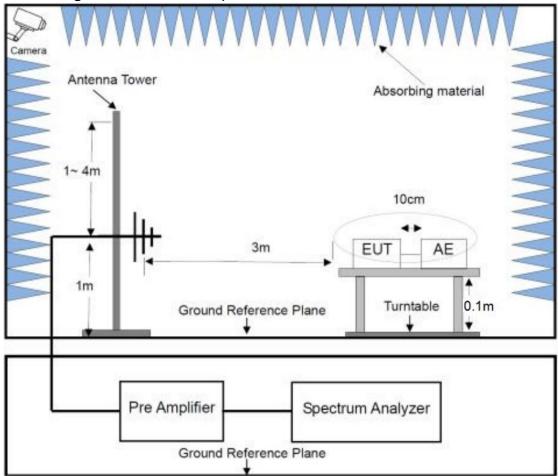
Contact discharges to the conductive surfaces and coupling planes. The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 20 indirect discharges to the center of the front edge of the Horizontal Coupling Plane (HCP). The remaining three test points shall each receive at least 20 direct contact discharges. If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

- a. The EUT was placed on a wooden table 0.8m height from the ground.
- b. The EUT was located 0.1m minimum from all side of the HCP (dimensions 1.6m x0.8m).
- c. Configure the EUT and support devices as per section 10.1.
- d. The support units were located 30cm away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10cm with EUT.
- e. Turn on the EUT and all support devices, and make it run stably.
- f. The time interval between two successive single discharges was at least 1 second. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- g. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.

- h. At least ten single discharges (in the most sensitive polarity) were applied at the front edge of each HCP opposite the center point of each unit of the EUT and 0.1 meters from the front of the EUT. The long axis of the discharge electrode was in the plane of the HCP and perpendicular to its front edge during the discharges.
- i. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane (VCP) in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.
- j. Repeat the above steps in each mode and record the test result.

10.4.Test Results

PASS.



Ambient Condition:	Temp.: 26.7°C	R.H.: 54%	Air Pressure : 101 kPa	
	Test level:	±4 KV for Contact Discharge		
		\pm 8 KV for Air Discharge		
	Discharge impedance:	330ohm / 150pF		
Test Specifications	No. of discharges:	10 times at each test point for each polarity at least		
	Polarity:	Positive / Negative		
	Discharge mode:	Single		
	Interval time of discharges:	≥1s		
Required Performance Criterion	В			
Tested Mode	AC Input mode+ Battery + load			
Те	st Point	Kind A-Air Discharge C-Contact Discharge	Result (Performance Criterion)	
Metal case		С	A	
Screw		С	A	
PV port		A	A	
Screen		A	A	
Button		A	A	
AC Output Port		A	A	
USB Port		A&C	A	
Indirect Discharge(VCP)		С	А	
Indirect Discharge(HCP)		С	А	

11.RADIO-FREQUENCY ELECTROMAGNETIC FIELD TEST

11.1.Block Diagram of Test Setup

11.2.Test Standard and Severity Levels

a. Test Standard

Product standard	EN IEC 61000-6-1
Basic standard	IEC 61000-4-3
Performance criterion	A

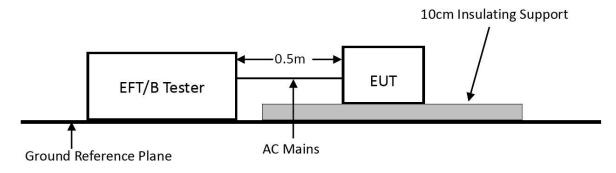
b. Severity Levels

Level	Field Strength (V/m)
1.	1
2.	3
3.	10
4.	30
Х	Special

- a. The testing was performed in a fully anechoic chamber.
- b. The EUT and necessary support devices were placed on a turn table which is 0.1 meter above ground.
- c. EUT was set 3 meter away from the transmitting antenna which is mounted on an antenna tower.
- d. Configure the EUT and support devices as per section 11.1.
- e. Turn on the EUT and all support devices, and make it run stably.
- f. Set horizontal and vertical polarization of the antenna to test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.
- g. Repeat the above steps in each mode and record the test result.

11.4.Test Results

PASS.



Radio-Frequency Electromagnetic Field Test Results				
Ambient Condition	Temp.: 23.4°C)	R.H.: 50.5%	Air Pressure: 101 kPa
	Fielded Streng	gth:	3V/m	
	Modulation:		1kHz sine wave, 80%	AM
Test Specifications	Frequency Siz	ze:	1% of preceding frequ	ency value
	Dwell Time:		1s	
	Mode:		Swept test	
Required Performance Criterion	А			
Tested mode	AC Input mode+ Battery + load			
Frequency (MHz)	Level (V/m)	Antenna polarity	Side	Result (Performance Criterion)
			Front	A
00.4000		Horizontal/	Left	A
80-1000	3	Vertical	Right	A
			Back	A
			Front	A
1400-6000	3	Horizontal/ Vertical	Left	A
	5		Right	A
			Back	A

12.FAST TRANSIENTS TEST

12.1.Block Diagram of Test Setup

12.2.Test Standard and Severity Levels

a. Test Standard

Product standard	EN IEC 61000-6-1
Basic standard	IEC 61000-4-4
Performance criterion	В

b. Severity level

Open circuit output test voltage and repetition rate of the impulses Power ports, earth port (PE) Signal data and control ports				
Level	Voltage peak kV	Repetition frequency kHz	Voltage peak kV	Repetition frequency kHz
1.	0.5	5 or 100	0.25	5 or 100
2.	1.0	5 or 100	0.5	5 or 100
3.	2.0	5 or 100	1.0	5 or 100
4.	4.0	5 or 100	2.0	5 or 100
Х	Special	Special	Special	Special

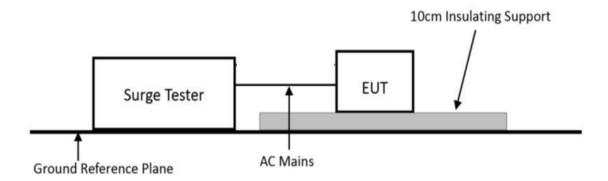
Note 1 The use of 5 kHz repetition rates is traditional, however, 100 kHz is closer to reality. Product committees should determine which frequencies are relevant for specific products or product types.

- Note 2 With some products, there may be no clear distinction between power ports and signal ports, in which case it is up to product committees to make this determination for test purposes.
- Note 3 "X" can be any level, above, below or in between the others. The level shall be specified in the dedicated equipment specification.

- a. The EUT was placed on the insulating support 0.1m above the reference ground plane.
- b. Configure the EUT and support devices as per section 12.1.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. For input and output AC power port of the EUT, the EUT was connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. The coaxial output of the EFT generator to the terminals on the EUT should not exceed 0.5 meter. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.
- e. For signal ports of the EUT, the EUT was connected to the power mains, and the signal line through a coupling device which couples the EUT interference signal to signal line. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.
- f. Repeat the above steps in each mode and record the test result.

12.4.Test Result

PASS.



Fast transients test Results				
Ambient Condition	Temp.: 28.3°C	R.H.56.2%	Air Pressure: 101 kPa	
Test Level:		1.0 kV for power port, 0.5KV for pv port		
	Repetition Frequency:	5kHz		
Test Openifications	Duration:	15ms		
Test Specifications	Period:	300ms		
	Impulse wave shape:	5/50ns (Tr/Th)		
	Test Duration:	≥1min		
Required Performance Criterion	В			
Test mode	AC Input mode+ Battery + load			
Coupling mode and port	 AC Power ⊠ Direct □ Signal line □ Capacitive DC port 			
Test Line	Test Voltage		Result ance Criterion)	
AC Input Power Ports	±1KV		А	
AC Output Power Ports	±1KV	A		
PV port	±0.5KV	А		
Signal port				
Note : No performance de	gradation or other exception	ns occurred during and a	fter the test.	

13. SURGE TEST

13.1.Block Diagram of Test Setup

13.2.Test Standard and Severity Levels

a. Test Standard

Product standard	EN IEC 61000-6-1
Basic standard	IEC 61000-4-5
Performance criterion	В

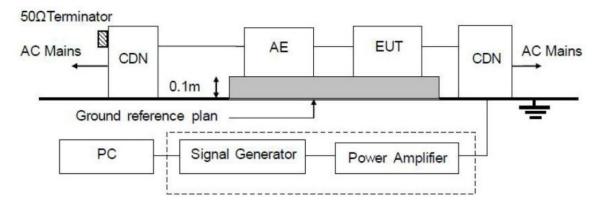
b. Severity level

Level	Open-Circuit Test Voltage KV
1.	0.5
2.	1.0
3.	2.0
4.	4.0
*	Special

- a. The EUT was placed on the wooden table 0.1m above the ground.
- b. Configure the EUT and support devices as per section 13.1.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. The surge is applied to the EUT power supply terminals via the capacitive coupling network Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- e. For test applied to unshielded un-symmetrically operated interconnection lines of EUT, the surge was applied to the lines via the capacitive coupling. The coupling / decoupling networks didn't influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- f. For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT, the surge was applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor were not specified. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- g. Five positive and five negative (polarity) pulses at specified phase angles with a 1min repetition rate are conducted during test.
- h. Repeat the above steps in each mode and record the test result.

13.4.Test Result

PASS.



Surge Test Results				
Ambient Condition	Temp.: 27.3°C	R.H.: 50.4%	Air Pressure: 101 kPa	
	Wave-shape:	1.2/50 us (Tr/Th) / 8/20	us (Tr/Th) for power port	
	Test Level:	±1kV for Line to Line ±1kV, ±2kV for Line to Earth		
	Phase angle:	0°, 90°, 180° and 270°		
Test Specifications	Polarity:	Positive / Negative		
	NO. of pulse:	5 positive / 5 negative		
	Pulse repetition rate:	1 time per minute / max	imum	
	Generator source impedance:	2 ohm / power supply network 12 ohm / power supply network to ground		
Required Performance Criterion	В			
Test mode	AC Input mode+ Battery + load			
Test Line	Phase Angle	Test Voltage	Result (Performance Criterior	
AC Input Power Ports Line to line	0°, 90°, 180°, 270°	±1KV	A	
AC Input Power Ports Line to earth	0°, 90°, 180°, 270°	±2KV	А	
AC Output Power Ports Line to line	0°, 90°, 180°, 270°	±1KV	А	
AC Output Power Ports Line to earth	0°, 90°, 180°, 270°	±2KV	А	
PV port Line to line	/	±0.5KV	А	
PV port Line to earth	1	±1KV	А	
DC port				

14.CONDUCTED RADIO-FREQUENCY COMMON MODE TEST

14.1.Block Diagram of Test Setup

14.2.Test Standard and Severity Levels

a. Test Standard

Product standard	EN IEC 61000-6-1
Basic standard	IEC 61000-4-6
Performance criterion	A

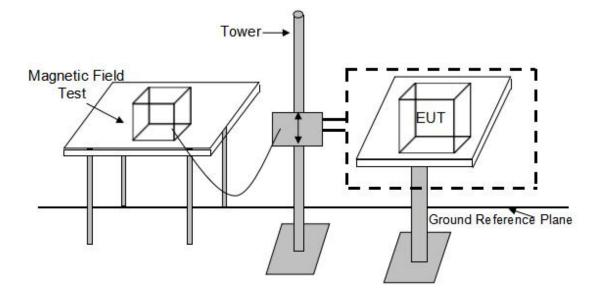
b. Severity level

Level	Field Strength (V)	
1.	1	
2.	3	
3.	10	
X	Special	

- a. The EUT was placed on the insulating support 0.1m above the ground reference plane. CDN (coupling and decoupling device) or EM clamp is placed on the ground plane about 0.3m from EUT. Cables between CDN or EM clamp and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- b. Configure the EUT and support devices as per section 14.1.
- c. Turn on the EUT and all support devices, and make it run stably.
- d. The disturbance signal described below is injected to EUT through CDN or EM clamp.
- e. The frequency range is swept from 150 KHz to 80 MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave. The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- f. Repeat the above steps in each mode and record the test result.

14.4.Test Result

PASS.



Conducted RF Common Mode Test Results					
Ambient Condition	Temp.: 23.1°C	R.H.: 51.2%	Air Pressure:101kPa		
	Test Level:	3V			
	Modulation: 1kHz sine wave, 80%AM		M		
Test Specifications	Step Size:	1% of preceding freque	ency value		
	Dwell Time:	1s Swept test			
	Mode:				
Required Performance Criterion	A				
Test mode	AC Input mode+ Battery + load				
Test Port	Frequency (MHz)	Level(V)	Result (Performance Criterion)		
AC Input Power Ports	0.15-80	3V	A		
AC Output Power Ports	0.15-80	3V	A		
PV port	0.15-80	3V	A		
Signal port					

15.POWER-FREQUENCY MAGNETIC FIELD TEST

15.1.Block Diagram of Test Setup

15.2.Test Standard and Severity Levels

a. Test Standard

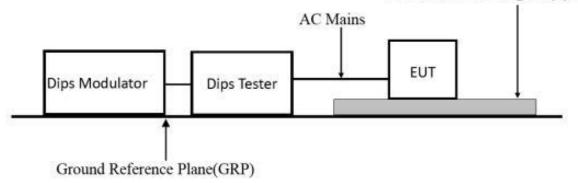
Product standard	EN IEC 61000-6-1
Basic standard	IEC 61000-4-8
Performance criterion	Α

b. Severity level

Level	Magnetic Field Strength A/m	
1.	1	
2.	3	
3.	10	
4.	30	
5.	100	
Х	Special	

- a. The EUT was placed on the middle of an induction coil(1*1m), under which is a
 0.1m-thick insulating support.
- b. Configure the EUT and support devices as per section 15.1.
- c. All cables of the EUT were exposed to the magnetic field for 1m of their length.
- X, Y and Z polarization of the induction coil are set on test, so that each side of the E.U.T. is affected by the magnetic field. If not possible as the EUT size, change the position of the EUT is permitted.
- e. Repeat the above steps in each mode and record the test result.

15.4.Test Result


N/A.

16.VOLTAGE DIPS AND INTERRUPTIONS TEST

16.1.Block Diagram of Test Setup

10cm Insulating Support

16.2.Test Standard and Severity Levels

a. Test Standard

Product standard	EN IEC 61000-6-1
Basic standard	IEC 61000-4-11
Performance criterion	B&C

b. Severity level

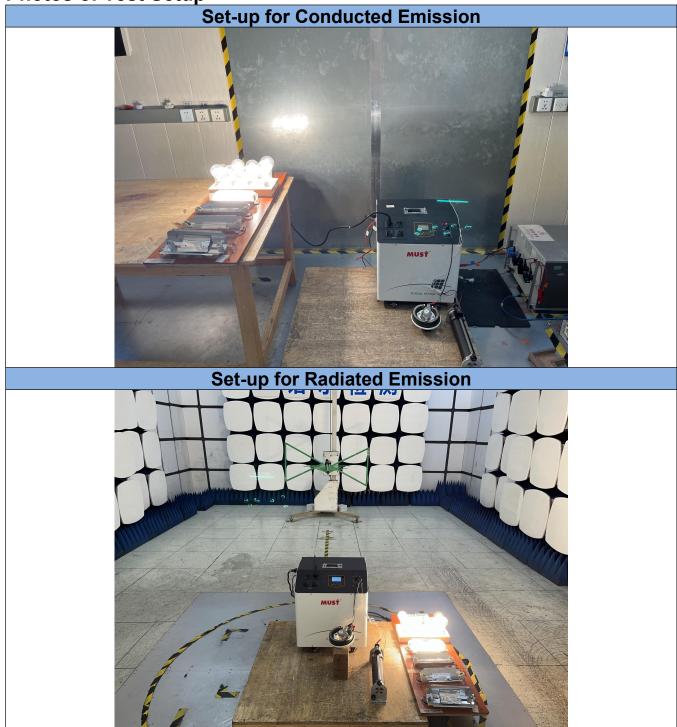
Class	Test level and durations for voltage dips $(t_s)(50Hz/60Hz)$				
Class 1		Case-by-case according to the equipment requirements			
Class 2	0 % during ¹ /2 cycle	0 % during 1 cycle		70 % during 25/30 ^b	cycles
Class 3	0 % during ¹ /2 cycle	0 % during 1 cycle	40 % ^c during 10/12 ^b cycles	70 % during 25/30 ^b cycles	80 % during 250/300 ^b cycles
Class X ^a	X	х	Х	х	х
Note: a. T	Note: a. To be defined by product committee. For equipment connected directly or indirectly				
to the public network, the levels must not be less severe than Class 2.					
b. "25/30 cycles" means "25 cycles for 50 Hz test" and "30 cycles for 60 Hz test",					
"10/12 cycles" means "10 cycles for 50 Hz test" and "12 cycles for 60 Hz test" and					
"250/300 cycles" means "250 cycles for 50 Hz test" and "300 cycles for 60 Hz test".					
c. N	c. May be replaced by product committee with a test level of 50 % for equipment that is				
ir	intended primarily for 200 V or 208V nominal operation.				

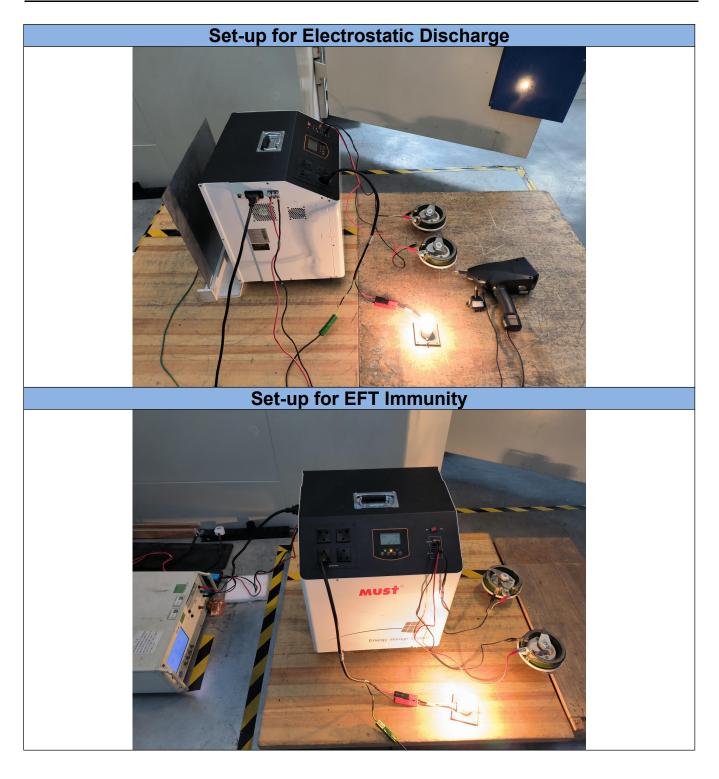
Class	Test level and durations for short interruptions (t_s) (50 Hz/60 Hz)				
Class 1	Case-by-case according to the equipment requirements				
Class 2	0 % during 250/300 ^b cycles				
Class 3	0 % during 250/300 ^b cycles				
Class X ^a	x x x x x				Х
Note: a. To	te: a. To be defined by product committee. For equipment connected directly or indirectly				
to the public network, the levels must not be less severe than Class 2.					
b. "250/300 cycles" means "250 cycles for 50 Hz test" and "300 cycles for 60 Hz test".					

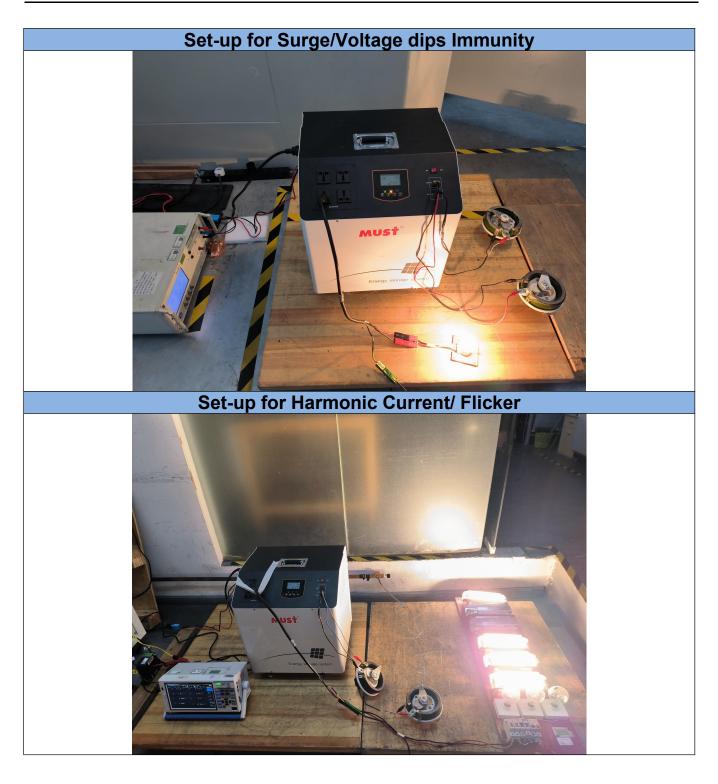
- a. The EUT was placed on the wooded table 0.1m above the ground.
- b. Configure the EUT and support devices as per section 16.1.
- c. Setting the parameter of tests and then perform the test software of test simulator.
- d. Conditions changes to occur at 0 and 180 degree crossover point of the voltage waveform.
- e. Repeat the above steps in each mode and record the test result.

16.4.Test Result

PASS.

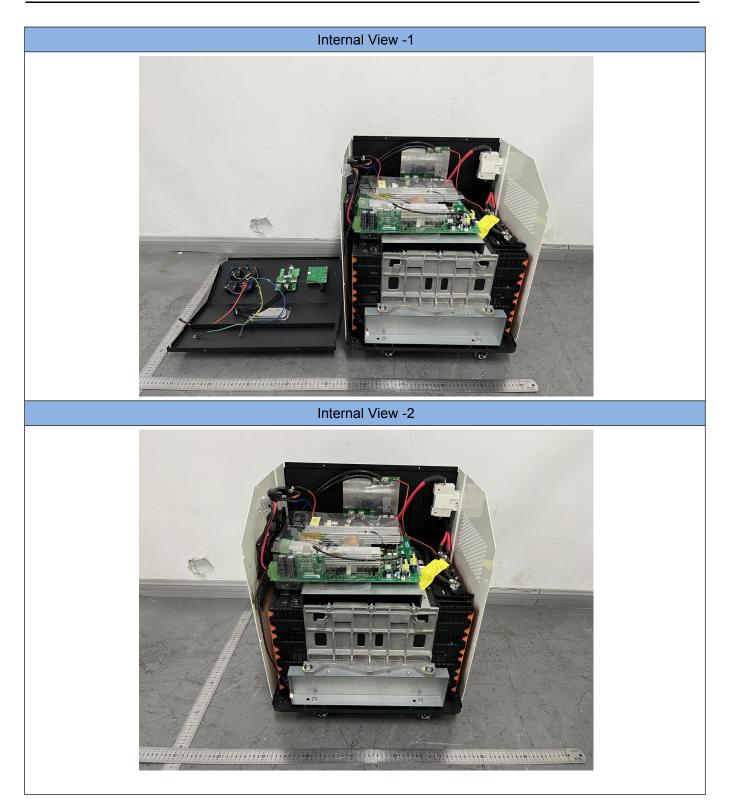

Ambient Condition:	Temp.: 27.8°C	R.H.: 56%	Air Pressure: 101 kPa		
	Residual voltage:	0%, 40%, 70%, 0%			
		⊠ 0.5 for 50/60Hz	☑ 1 for 50/60Hz		
	Duration (periods):	⊠ 25 for 50Hz	⊠ 30 for 60Hz		
Test Specifications:		⊠ 250 for 50Hz	⊠ 300 for 60Hz		
	Phase angle:	0° and 180°			
	Interval between tests:	10s			
	NO. of tests:	3 times			
Required Performance Criterion	B for voltage dips C for voltage dips and voltage interruptions				
Test mode:	AC Input mode+ Battery + load				
Test Level	Duration (periods) Result				
(% Residual voltage) (Input)	50Hz	60Hz	(Performance Criterion		
0	0.5P	0.5P	B ^{note}		
0	1P	1P	B ^{note}		
70	25P	30P B ^{note}			
0	250P	300P	B ^{note}		

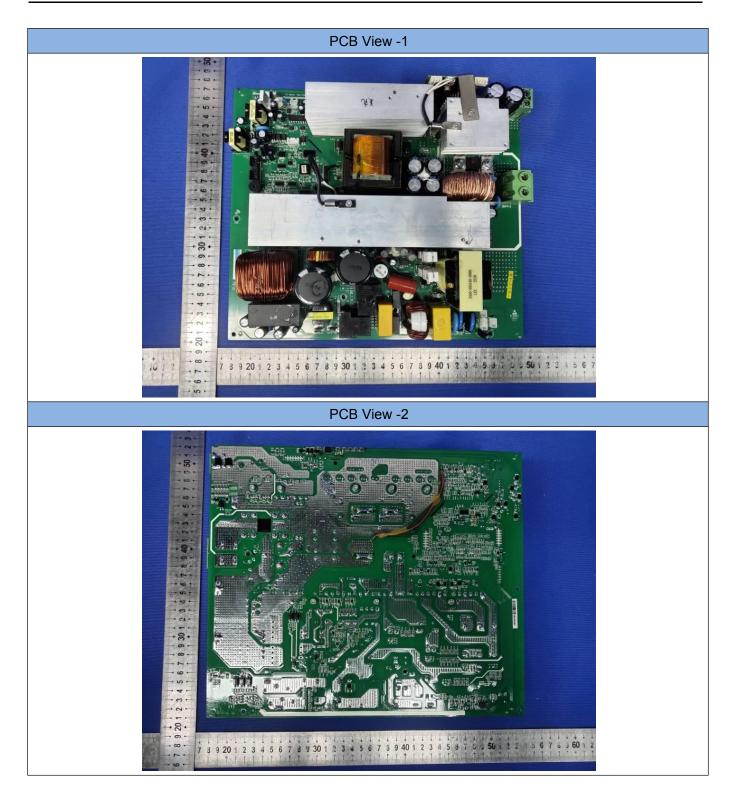

APPENDIX I (PHOTOS OF TEST SETUP)

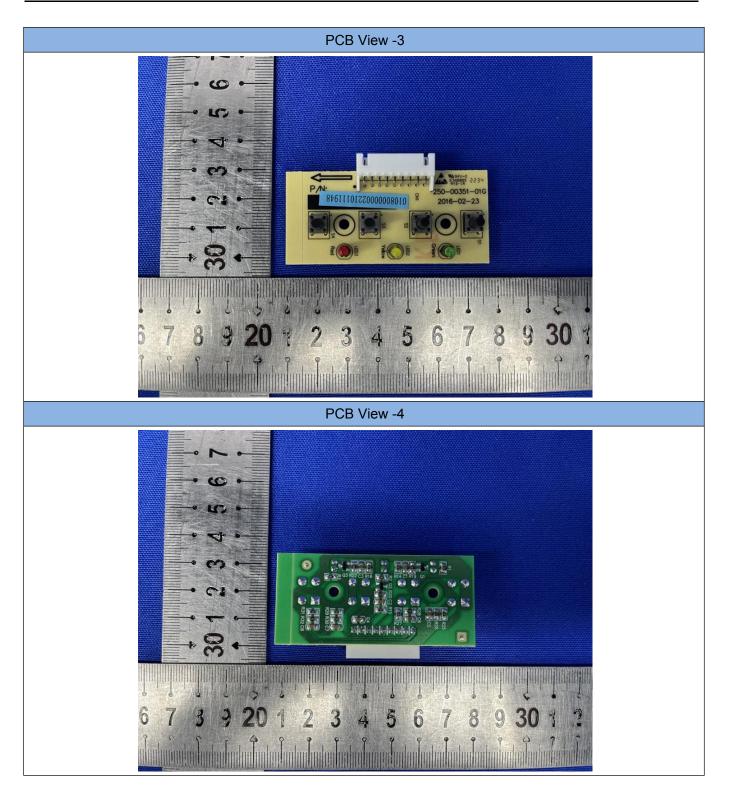

Photos of Test Setup

APPENDIX II (PHOTOS OF E.U.T)

Photos of the EUT


Shenzhen Nore Testing Center Co.,Ltd. Report No.: SZNTC2210052EV00


Shenzhen Nore Testing Center Co.,Ltd. Report No.: SZNTC2210052EV00



Shenzhen Nore Testing Center Co.,Ltd. Report No.: SZNTC2210052EV00

The EEE C 00 3 3 3 5 6 20 5 30 2 3 a 6 8 9 CO PCB View -6 00 2600-000007-0000 TH2034E-10-FR/210113

3

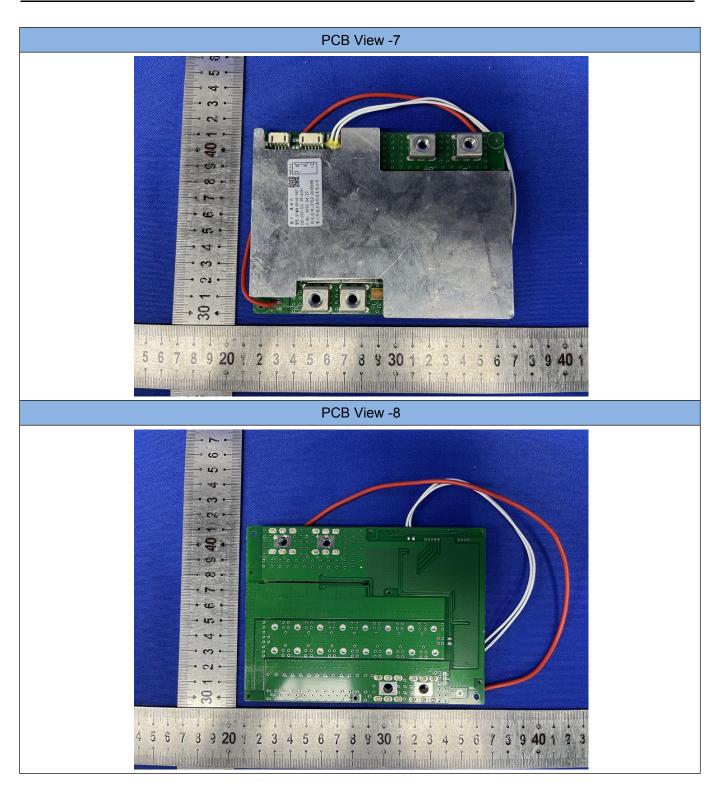
8 9 30

6

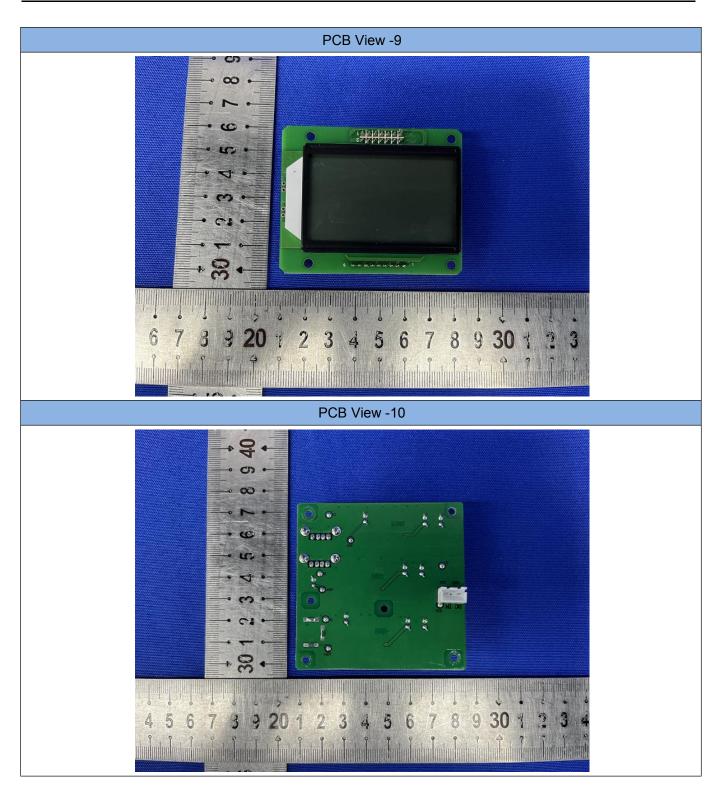
PCB View -5

N

€ 0 40


8 3

6


31

----End ----